Suppr超能文献

探索互联网认知行为疗法治疗失眠中的脱落情况:患病率、自我报告原因以及作为预测因素的基线和干预数据的二次分析

Exploring dropout in internet-delivered cognitive behavioral therapy for insomnia: A secondary analysis of prevalence, self-reported reasons, and baseline and intervention data as predictors.

作者信息

Simon Laura, Steinmetz Lisa, Bendig Eileen, Küchler Ann-Marie, Riemann Dieter, Ebert David Daniel, Spiegelhalder Kai, Baumeister Harald

机构信息

Institute of Psychology and Education, Department of Clinical Psychology and Psychotherapy, Ulm University, Ulm, Germany.

Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.

出版信息

Int J Clin Health Psychol. 2025 Jul-Sep;25(3):100598. doi: 10.1016/j.ijchp.2025.100598. Epub 2025 Jun 28.

Abstract

INTRODUCTION

Internet-delivered cognitive behavioral therapy for insomnia (iCBT-I) is an effective treatment. However, dropout is a common challenge in digital therapeutics. This study examines dropout in iCBT-I by analyzing reported reasons for dropout and investigating whether baseline variables and intervention usage data can predict dropout.

METHODS

This is an exploratory secondary analysis of a clinical trial investigating a stepped care model for insomnia featuring an eight-module iCBT-I. Reasons for dropout from the iCBT-I were assessed via self-developed items in follow-up surveys, and a dropout survey was sent to all patients who had not completed at least seven modules of the iCBT-I within 12 weeks. The proportion of respondents who agreed with the respective items was calculated. Additionally, bivariate models were specified to explore whether baseline variables and intervention usage data can predict dropout.

RESULTS

The patients included in this sub-study had a mean age of 49.3 (SD=13.0), with 73.4 % identifying as female. At pre-treatment, their mean insomnia severity was 18.6 (SD=3.9). Among the 233 patients, 103 (44.2 %) were categorized as dropouts. The most frequently reported reasons for dropout were distractions from daily life, the perception of the content not being useful, and difficulties resuming after a break. None of the examined baseline variables significantly predicted dropout, whereas the time needed to complete the first module (OR=1.16; 95 %CI=1.08-1.27) and the number of sleep diary entries in the first week (OR=0.73; 95 %CI=0.65-0.80) significantly predicted dropout.

DISCUSSION

This study highlights dropout as a relevant challenge in iCBT-I, affecting over 40 % of patients. Self-reported reasons indicate the importance of compatibility with distractions from daily life and perceived effectiveness. The prediction models suggest that dropout risk profiles can be developed based on first-week treatment data. Future research should focus on validating such models to improve effectiveness and user retention.

摘要

引言

互联网认知行为疗法治疗失眠症(iCBT-I)是一种有效的治疗方法。然而,退出治疗是数字疗法中常见的挑战。本研究通过分析报告的退出原因并调查基线变量和干预使用数据是否能够预测退出情况,来研究iCBT-I中的退出治疗问题。

方法

这是一项对一项临床试验的探索性二次分析,该试验研究了一种以八模块iCBT-I为特色的失眠症阶梯式护理模式。通过随访调查中自行设计的项目评估退出iCBT-I的原因,并向所有在12周内未完成至少七个模块iCBT-I的患者发送退出调查问卷。计算同意各个项目的受访者比例。此外,还指定了双变量模型来探索基线变量和干预使用数据是否能够预测退出情况。

结果

纳入本亚研究的患者平均年龄为49.3岁(标准差=13.0),73.4%为女性。治疗前,他们的平均失眠严重程度为18.6(标准差=3.9)。在233名患者中,103名(44.2%)被归类为退出治疗者。最常报告的退出原因是日常生活中的干扰、认为内容无用以及休息后难以重新开始。所检查的基线变量均未显著预测退出情况,而完成第一个模块所需的时间(比值比=1.16;95%置信区间=1.08-1.27)和第一周睡眠日记条目的数量(比值比=0.73;95%置信区间=0.65-0.80)显著预测了退出情况。

讨论

本研究强调退出治疗是iCBT-I中的一个相关挑战,影响超过40%的患者。自我报告的原因表明了与日常生活干扰的兼容性和感知有效性的重要性。预测模型表明,可以根据第一周的治疗数据制定退出风险概况。未来的研究应侧重于验证此类模型,以提高有效性和用户留存率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5a/12269844/6db6339ef015/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验