Suppr超能文献

通过深度学习识别药物相互作用:一项真实世界研究。

Identify drug-drug interactions via deep learning: A real world study.

作者信息

Li Jingyang, Zhao Yanpeng, Wang Zhenting, Lei Chunyue, Wu Lianlian, Zhang Yixin, He Song, Bo Xiaochen, Xiao Jian

机构信息

Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.

Academy of Military Medical Sciences, Beijing, 100850, China.

出版信息

J Pharm Anal. 2025 Jun;15(6):101194. doi: 10.1016/j.jpha.2025.101194. Epub 2025 Jan 8.

Abstract

Identifying drug-drug interactions (DDIs) is essential to prevent adverse effects from polypharmacy. Although deep learning has advanced DDI identification, the gap between powerful models and their lack of clinical application and evaluation has hindered clinical benefits. Here, we developed a Multi-Dimensional Feature Fusion model named MDFF, which integrates one-dimensional simplified molecular input line entry system sequence features, two-dimensional molecular graph features, and three-dimensional geometric features to enhance drug representations for predicting DDIs. MDFF was trained and validated on two DDI datasets, evaluated across three distinct scenarios, and compared with advanced DDI prediction models using accuracy, precision, recall, area under the curve, and F1 score metrics. MDFF achieved state-of-the-art performance across all metrics. Ablation experiments showed that integrating multi-dimensional drug features yielded the best results. More importantly, we obtained adverse drug reaction reports uploaded by Xiangya Hospital of Central South University from 2021 to 2023 and used MDFF to identify potential adverse DDIs. Among 12 real-world adverse drug reaction reports, the predictions of 9 reports were supported by relevant evidence. Additionally, MDFF demonstrated the ability to explain adverse DDI mechanisms, providing insights into the mechanisms behind one specific report and highlighting its potential to assist practitioners in improving medical practice.

摘要

识别药物相互作用(DDIs)对于预防多重用药的不良反应至关重要。尽管深度学习推动了DDI识别的发展,但强大模型与缺乏临床应用和评估之间的差距阻碍了临床效益。在此,我们开发了一种名为MDFF的多维度特征融合模型,该模型整合了一维简化分子输入线性条目系统序列特征、二维分子图特征和三维几何特征,以增强用于预测DDIs的药物表征。MDFF在两个DDI数据集上进行了训练和验证,在三种不同场景下进行了评估,并与先进的DDI预测模型在准确性、精确性、召回率、曲线下面积和F1分数指标方面进行了比较。MDFF在所有指标上均取得了领先的性能。消融实验表明,整合多维度药物特征产生了最佳结果。更重要的是,我们获取了中南大学湘雅医院2021年至2023年上传的药物不良反应报告,并使用MDFF识别潜在的不良DDIs。在12份真实世界的药物不良反应报告中,9份报告的预测得到了相关证据的支持。此外,MDFF展示了解释不良DDI机制的能力,深入剖析了一份具体报告背后的机制,并突出了其协助从业者改善医疗实践的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43d8/12268060/b669175708a8/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验