Suppr超能文献

通过知识子图学习实现准确且可解释的药物相互作用预测。

Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning.

作者信息

Wang Yaqing, Yang Zaifei, Yao Quanming

机构信息

Baidu Research, Baidu Inc., Beijing, China.

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.

出版信息

Commun Med (Lond). 2024 Mar 28;4(1):59. doi: 10.1038/s43856-024-00486-y.

Abstract

BACKGROUND

Discovering potential drug-drug interactions (DDIs) is a long-standing challenge in clinical treatments and drug developments. Recently, deep learning techniques have been developed for DDI prediction. However, they generally require a huge number of samples, while known DDIs are rare.

METHODS

In this work, we present KnowDDI, a graph neural network-based method that addresses the above challenge. KnowDDI enhances drug representations by adaptively leveraging rich neighborhood information from large biomedical knowledge graphs. Then, it learns a knowledge subgraph for each drug-pair to interpret the predicted DDI, where each of the edges is associated with a connection strength indicating the importance of a known DDI or resembling strength between a drug-pair whose connection is unknown. Thus, the lack of DDIs is implicitly compensated by the enriched drug representations and propagated drug similarities.

RESULTS

Here we show the evaluation results of KnowDDI on two benchmark DDI datasets. Results show that KnowDDI obtains the state-of-the-art prediction performance with better interpretability. We also find that KnowDDI suffers less than existing works given a sparser knowledge graph. This indicates that the propagated drug similarities play a more important role in compensating for the lack of DDIs when the drug representations are less enriched.

CONCLUSIONS

KnowDDI nicely combines the efficiency of deep learning techniques and the rich prior knowledge in biomedical knowledge graphs. As an original open-source tool, KnowDDI can help detect possible interactions in a broad range of relevant interaction prediction tasks, such as protein-protein interactions, drug-target interactions and disease-gene interactions, eventually promoting the development of biomedicine and healthcare.

摘要

背景

发现潜在的药物相互作用(DDIs)是临床治疗和药物研发中长期存在的挑战。近年来,已开发出深度学习技术用于DDI预测。然而,这些技术通常需要大量样本,而已知的DDIs却很稀少。

方法

在这项工作中,我们提出了KnowDDI,一种基于图神经网络的方法,可应对上述挑战。KnowDDI通过自适应利用大型生物医学知识图谱中的丰富邻域信息来增强药物表示。然后,它为每个药物对学习一个知识子图来解释预测的DDI,其中每条边都与一个连接强度相关联,该强度表示已知DDI的重要性或未知连接的药物对之间的相似强度。因此,丰富的药物表示和传播的药物相似性隐式地弥补了DDIs的不足。

结果

在此我们展示了KnowDDI在两个基准DDI数据集上的评估结果。结果表明,KnowDDI获得了具有更好可解释性的最新预测性能。我们还发现,在知识图谱更稀疏的情况下,KnowDDI比现有方法受影响更小。这表明当药物表示不太丰富时,传播的药物相似性在弥补DDIs不足方面发挥着更重要的作用。

结论

KnowDDI很好地结合了深度学习技术的效率和生物医学知识图谱中的丰富先验知识。作为一个原创的开源工具,KnowDDI可以帮助在广泛的相关相互作用预测任务中检测可能的相互作用,如蛋白质 - 蛋白质相互作用、药物 - 靶点相互作用和疾病 - 基因相互作用,最终促进生物医学和医疗保健的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f36e/10978847/9cf347622b16/43856_2024_486_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验