Dillinger Cornel, Rasaiah Ahilan, Vogel Abigail, Bahou Chaimae, Monastyrskaya Katia, Gheinani Ali Hashemi, Ahmed Daniel
Acoustic Robotics Systems Lab, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.
Functional Urology Research Group, Department for Biomedical Research, University of Bern, Bern, Switzerland.
Sci Adv. 2025 Jul 18;11(29):eadt8887. doi: 10.1126/sciadv.adt8887.
Visualization and tracking of microrobots in real time pose key challenges for surgical microrobotic systems, as existing imaging modalities like magnetic resonance imaging, computed tomography, and x-ray are unable to monitor microscale items with real-time resolution. Ultrasound imaging-guided drug administration represents a remarkable advancement in this respect, offering real-time visual feedback on invasive medical procedures. However, ultrasound imaging still faces substantial inherent limitations in spatial resolution and signal attenuation, which hinder extending this method to microrobot visualization. Here, we introduce an approach for visualizing individual microrobots in real time with color flow mapping ultrasound imaging based on acoustically induced structural oscillations of the microrobot generating a pseudo-Doppler signal. This approach enables the simultaneous localization and activation of bubble-based microrobots using two ultrasound sources operating at distinct frequency bandwidths. Our successful capture of microrobots measuring 60 to 80 micrometers in diameter reveals the potential of real-time ultrasonic imaging at the microscale.
对手术微型机器人系统而言,实时可视化和跟踪微型机器人是关键挑战,因为诸如磁共振成像、计算机断层扫描和X光等现有成像方式无法以实时分辨率监测微观尺度的物体。超声成像引导下的药物给药在这方面是一项重大进展,为侵入性医疗程序提供实时视觉反馈。然而,超声成像在空间分辨率和信号衰减方面仍面临重大固有局限,这阻碍了将该方法扩展至微型机器人可视化。在此,我们介绍一种基于微型机器人的声学诱导结构振荡产生伪多普勒信号,利用彩色血流图超声成像实时可视化单个微型机器人的方法。该方法能够使用两个工作在不同频率带宽的超声源同时定位和激活基于气泡的微型机器人。我们成功捕获直径为60至80微米的微型机器人,揭示了微观尺度实时超声成像的潜力。