Suppr超能文献

使用机器学习算法和人工神经网络,通过计算机断层扫描技术,利用面神经管参数进行性别估计。

Sex estimation with parameters of the facial canal by computed tomography using machine learning algorithms and artificial neural networks.

作者信息

Secgin Yusuf, Kaya Seren, Harmandaoğlu Oğuzhan, Öztürk Oğuzhan, Senol Deniz, Önbaş Ömer, Yılmaz Nihat

机构信息

Department of Anatomy, Faculty of Medicine, Karabük University, Karabük, Türkiye.

Department of Anatomy, Faculty of Medicine, Düzce University, Düzce, Türkiye.

出版信息

BMC Med Imaging. 2025 Jul 18;25(1):291. doi: 10.1186/s12880-025-01834-7.

Abstract

BACKGROUND

The skull is highly durable and plays a significant role in sex determination as one of the most dimorphic bones. The facial canal (FC), a clinically significant canal within the temporal bone, houses the facial nerve. This study aims to estimate sex using morphometric measurements from the FC through machine learning (ML) and artificial neural networks (ANNs).

MATERIALS AND METHODS

The study utilized Computed Tomography (CT) images of 200 individuals (100 females, 100 males) aged 19-65 years. These images were retrospectively retrieved from the Picture Archiving and Communication Systems (PACS) at Düzce University Faculty of Medicine, Department of Radiology, covering 2021-2024. Bilateral measurements of nine temporal bone parameters were performed in axial, coronal, and sagittal planes. ML algorithms including Quadratic Discriminant Analysis (QDA), Linear Discriminant Analysis (LDA), Decision Tree (DT), Extra Tree Classifier (ETC), Random Forest (RF), Logistic Regression (LR), Gaussian Naive Bayes (GaussianNB), and k-Nearest Neighbors (k-NN) were used, alongside a multilayer perceptron classifier (MLPC) from ANN algorithms.

RESULTS

Except for QDA (Acc 0.93), all algorithms achieved an accuracy rate of 0.97. SHapley Additive exPlanations (SHAP) analysis revealed the five most impactful parameters: right SGAs, left SGAs, right TSWs, left TSWs and, the inner mouth width of the left FN, respectively.

CONCLUSIONS

FN-centered morphometric measurements show high accuracy in sex determination and may aid in understanding FN positioning across sexes and populations. These findings may support rapid and reliable sex estimation in forensic investigations-especially in cases with fragmented craniofacial remains-and provide auxiliary diagnostic data for preoperative planning in otologic and skull base surgeries. They are thus relevant for surgeons, anthropologists, and forensic experts.

CLINICAL TRIAL NUMBER

Not applicable.

摘要

背景

颅骨高度耐用,作为最具二态性的骨骼之一,在性别鉴定中发挥着重要作用。面神经管(FC)是颞骨内一条具有临床意义的管道,容纳面神经。本研究旨在通过机器学习(ML)和人工神经网络(ANN),利用面神经管的形态测量数据来估计性别。

材料与方法

本研究使用了200名年龄在19 - 65岁之间个体(100名女性,100名男性)的计算机断层扫描(CT)图像。这些图像是从杜兹大学医学院放射科的图像存档与通信系统(PACS)中回顾性获取的,时间跨度为2021 - 2024年。在轴向、冠状和矢状平面上对九个颞骨参数进行双侧测量。使用了包括二次判别分析(QDA)、线性判别分析(LDA)、决策树(DT)、极端随机树分类器(ETC)、随机森林(RF)、逻辑回归(LR)、高斯朴素贝叶斯(GaussianNB)和k近邻(k - NN)在内的ML算法,以及ANN算法中的多层感知器分类器(MLPC)。

结果

除QDA(准确率0.93)外,所有算法的准确率均达到0.97。SHapley值相加解释(SHAP)分析揭示了五个最具影响力的参数:分别为右侧茎乳孔(SGAs)、左侧茎乳孔、右侧颞骨宽度(TSWs)、左侧颞骨宽度以及左侧面神经内口宽度。

结论

以面神经为中心的形态测量在性别鉴定中显示出高准确率,可能有助于理解不同性别和人群中的面神经定位。这些发现可能支持法医调查中快速可靠的性别估计,特别是在颅面残骸破碎的案件中,并为耳科和颅底手术的术前规划提供辅助诊断数据。因此,它们对外科医生、人类学家和法医专家具有重要意义。

临床试验编号

不适用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c385/12275255/7993bde19578/12880_2025_1834_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验