Suppr超能文献

在忆阻交叉阵列中实现用于内存并行计算的新型多数逻辑演示。

Demonstration of a novel majority logic in a memristive crossbar array for in-memory parallel computing.

作者信息

Choi Moon Gu, In Jae Hyun, Song Hanchan, Kim Gwangmin, Rhee Hakseung, Park Woojoon, Kim Kyung Min

机构信息

Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.

出版信息

Mater Horiz. 2025 Jan 2;12(1):131-140. doi: 10.1039/d4mh01196a.

Abstract

A memristive crossbar array can execute Boolean logic operations directly within the memory, which is highly noteworthy as it addresses the data bottleneck issue in traditional von Neumann computing. Although its potential has been widely demonstrated, achieving practical levels of operational reliability and computational efficiency remains a challenge. Here, we introduce a three-input majority logic gate supported by near-memory operations, serving as a universal gate and achieving both robust reliability and high efficiency in versatile logic operations. We fabricated a highly reliable HfO-based memristive array, incorporating a series resistor to increase the reset voltage of the memristor, thereby increasing the operational voltage margin of the gate operation. This ensured reliable operation of the majority gate, resulting in successful experimental proof of combined 1-bit full adder and subtractor operations performed in 5 steps using 7 cells. Additionally, we propose that an -bit parallel prefix adder (PPA) operation is possible in (log ) steps, by taking advantage of the parallel operation capability of the majority gate. This achieves 8.5× higher spatiotemporal efficiency than the previously reported NOR-based logic system in 64-bit adder operation. Moreover, as increases, the spatiotemporal efficiency further improves, which significantly enhances the applicability of memristive logic-in-memory.

摘要

忆阻交叉阵列可以直接在内存中执行布尔逻辑运算,这一点非常值得注意,因为它解决了传统冯·诺依曼计算中的数据瓶颈问题。尽管其潜力已得到广泛证明,但要实现实际水平的操作可靠性和计算效率仍然是一项挑战。在此,我们介绍一种由近内存操作支持的三输入多数逻辑门,它作为通用门,在通用逻辑运算中实现了强大的可靠性和高效率。我们制造了一种高度可靠的基于HfO的忆阻阵列,并入一个串联电阻以增加忆阻器的复位电压,从而增加门操作的工作电压裕度。这确保了多数门的可靠运行,从而成功通过实验证明了使用7个单元分5步执行的1位全加器和减法器组合操作。此外,我们提出,利用多数门的并行操作能力,在(log )步内进行 -位并行前缀加法器(PPA)操作是可行的。在64位加法器操作中,这实现了比先前报道的基于或非门的逻辑系统高8.5倍的时空效率。而且,随着 的增加,时空效率进一步提高,这显著增强了忆阻内存逻辑的适用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验