Suppr超能文献

利用深度学习和多光谱光声成像推进非侵入性黑色素瘤诊断

Advancing non-invasive melanoma diagnostics with deep learning and multispectral photoacoustic imaging.

作者信息

Merdasa Aboma, Fracchia Alice, Stridh Magne, Hult Jenny, Andersson Emil, Edén Patrik, Olariu Victor, Malmsjö Malin

机构信息

Department of Clinical Sciences Lund, Ophthalmology, Lund University, Sweden.

Skåne University Hospital, Lund, Sweden.

出版信息

Photoacoustics. 2025 Jun 19;45:100743. doi: 10.1016/j.pacs.2025.100743. eCollection 2025 Oct.

Abstract

The incidence of melanoma is rising and will require more efficient diagnostic procedures to meet a growing demand. Excisional biopsy and histopathology is still the standard, which often requires multiple surgical incisions with increasing margins due inaccurate visual assessment of where the melanoma borders to healthy tissue. This challenge stems, in part, from the inability to reliably delineate the melanoma without visually inspecting chemically stained histopathological cross-sections. Spectroscopic imaging have shown promise to non-invasively characterize the molecular composition of tissue and thereby distinguish melanoma from healthy tissue based on spectral features. In this work we describe a computational framework applied to multispectral photoacoustic (PA) imaging data of melanoma in humans and demonstrate how the borders of the tumor can be automatically determined without human input. The framework combines K-means clustering, for an unbiased selection of training data, a one-dimensional convolutional neural network applied to PA spectra for classifying pixels as either healthy or diseased, and an active contour algorithm to finally delineate the melanoma in 3D. The work stands to impact clinical practice as it can provide both pre-surgical and perioperative guidance to ensure complete tumor removal with minimal surgical incisions.

摘要

黑色素瘤的发病率正在上升,这将需要更有效的诊断程序来满足不断增长的需求。切除活检和组织病理学仍是标准方法,由于对黑色素瘤与健康组织边界的视觉评估不准确,通常需要进行多次手术切口并扩大切缘。这一挑战部分源于无法在不目视检查化学染色的组织病理学横截面的情况下可靠地勾勒出黑色素瘤。光谱成像已显示出有望非侵入性地表征组织的分子组成,从而根据光谱特征将黑色素瘤与健康组织区分开来。在这项工作中,我们描述了一个应用于人类黑色素瘤多光谱光声(PA)成像数据的计算框架,并展示了如何在无需人工干预的情况下自动确定肿瘤边界。该框架结合了K均值聚类(用于无偏选择训练数据)、应用于PA光谱以将像素分类为健康或患病的一维卷积神经网络,以及最终在三维中勾勒黑色素瘤的主动轮廓算法。这项工作可能会影响临床实践,因为它可以提供术前和围手术期指导,以确保在最小手术切口的情况下完全切除肿瘤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5b4/12272440/1dd914b4eb08/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验