Xu Zhihong, Tao Dan, Jiang Qihua, Wei Wensong, Ma Qian
Department of Breast Surgery, The Third Hospital of Nanchang, Nanchang, China.
Breast Care (Basel). 2025 Jun 12. doi: 10.1159/000546885.
There is no uniform standard on whether total mastectomy for ductal carcinoma in situ (DCIS) can exempt sentinel lymph node biopsy (SLNB). This study attempts to find the risk factors for the underestimation of DCIS pathology and establish the corresponding prediction model to screen suitable DCIS patients for exemption from SLNB.
A total of 826 patients with DCIS met the inclusion criteria. Logistic regression identified lesion size, Ki67, estrogen receptor (ER) status, human epidermal growth factor receptor 2 (HER2) status, histological grade, and diagnostic method as independent predictors of pathological underestimation ( < 0.05). Based on these variables, a predictive model was developed: = 0.354 × lesion size + 0.017 × Ki67 + 1.186 × ER - 2.501 × diagnosis method (1) - 1.575 × diagnosis method (2) - 0.050 × HER2 (1) - 1.578 × HER2 (2) + 1.160 × grade (1) + 1.497 × grade (2) - 2.418 (if age <50) - 0.156 × 1 (if age >50). The model showed good performance with a sensitivity of 79.2%, specificity of 73.8%, and overall accuracy of 76.2%. The area under the ROC curve (AUC) was 0.856 (95% confidence interval: 0.831-0.881, < 0.001). Subgroup analyses indicated that age, presence of mass, ER, HER2, tumor grade, and histological grade significantly affected model performance (AUC = 0.787; sensitivity = 0.695; specificity = 0.753). Stratified analysis showed higher sensitivity in patients <50 years (0.840 vs. 0.656) and higher AUC in ER-positive cases (0.865). In HER2-based analysis, only the presence of a mass remained significant. Mass-based analysis revealed all variables except age were significant, with a higher AUC in patients without a mass (0.784 vs. 0.727).
This study developed a predictive model based on lesion size, Ki67, ER status, HER2 status, histological grade, and diagnostic method to assess the risk of pathological underestimation in DCIS. The model demonstrated good predictive performance (AUC = 0.856) with high sensitivity and specificity, indicating its potential clinical utility. Subgroup analyses revealed that factors such as age, presence of a mass, and ER status influenced model performance, with particularly better accuracy observed in patients under 50 and those with ER-positive tumors. This model may serve as a useful tool to support clinical decision-making, especially in preoperative evaluation of invasive potential in DCIS patients.
关于导管原位癌(DCIS)全乳切除术是否可免除前哨淋巴结活检(SLNB),目前尚无统一标准。本研究旨在探寻DCIS病理低估的危险因素,并建立相应的预测模型,以筛选适合免除SLNB的DCIS患者。
共有826例DCIS患者符合纳入标准。逻辑回归分析确定病变大小、Ki67、雌激素受体(ER)状态、人表皮生长因子受体2(HER2)状态、组织学分级及诊断方法为病理低估(<0.05)的独立预测因素。基于这些变量,建立了一个预测模型:=0.354×病变大小 + 0.017×Ki67 + 1.186×ER - 2.501×诊断方法(1) - 1.575×诊断方法(2) - 0.050×HER2(1) - 1.578×HER2(2) + 1.160×分级(1) + 1.497×分级(2) - 2.418(如果年龄<50岁) - 0.156×1(如果年龄>50岁)。该模型表现良好,灵敏度为79.2%,特异度为73.8%,总体准确率为76.2%。ROC曲线下面积(AUC)为0.856(95%置信区间:0.831 - 0.881,<0.001)。亚组分析表明,年龄、肿块的存在、ER、HER2、肿瘤分级和组织学分级显著影响模型性能(AUC = 0.787;灵敏度 = 0.695;特异度 = 0.753)。分层分析显示,年龄<50岁的患者灵敏度更高(0.840对0.656),ER阳性病例的AUC更高(0.865)。在基于HER2的分析中,只有肿块的存在仍然具有显著性。基于肿块的分析显示,除年龄外所有变量均具有显著性,无肿块患者的AUC更高(0.784对0.727)。
本研究基于病变大小、Ki67、ER状态、HER2状态、组织学分级和诊断方法建立了一个预测模型,以评估DCIS病理低估的风险。该模型具有良好的预测性能(AUC = 0.856),灵敏度和特异度较高,表明其具有潜在的临床应用价值。亚组分析显示,年龄、肿块的存在和ER状态等因素影响模型性能,在年龄<50岁的患者和ER阳性肿瘤患者中观察到的准确性尤其更高。该模型可作为支持临床决策的有用工具,特别是在DCIS患者侵袭潜能的术前评估中。