Suppr超能文献

纳米颗粒在小麦盐胁迫管理和生物强化中的应用:双途径综述与见解

Application of nanoparticles for salinity stress management and biofortification in wheat: a review of dual approaches and insights.

作者信息

Singh Abhishek, Bol Roland, Lovynska Viktoriia, Singh Rupesh Kumar, Sousa João Ricardo, Ghazaryan Karen

机构信息

Faculty of Biology, Yerevan State University, Yerevan, Armenia.

Institute of Bio- and Geosciences (IBG), Forschungszentrum Jülich, Jülich, Germany.

出版信息

Front Plant Sci. 2025 Jul 4;16:1592866. doi: 10.3389/fpls.2025.1592866. eCollection 2025.

Abstract

Salinity stress is one of the most challenging constraints affecting wheat production, limiting both yield and nutritional quality. Wheat is one of the most important staple cereals as well as a major source of carbohydrates for a considerable portion of the world population, yet wheat has suffered from significant productivity constraints due to salt stress. Such stress adversely affects germination, vegetative growth, reproductive organ development, enzymatic activity, photosynthesis photostability, and hormonal equilibrium, eventually causing oxidative stress and drastic loss of crop yield. Furthermore, the reducing nutritional quality of wheat further aggravates the issues regarding malnutrition and food security, highlighting the need for effective mitigation strategies. Although various methods have been investigated, including plant breeding, genetic engineering, and agronomic management, they are labor, cost, and time-intensive. Nanotechnology is a novel, eco-friendly and efficient approach for controlling salinity stress and improving crop biofortification. Some common methods of applications of nanotechnology-based products like nanoparticles (NPs) are foliar spraying, soil amendments and seed priming, which have shown considerable promise in improving salinity stress resistance, nutrient absorption, and wheat yield. This review outlines the extent of contribution of NPs in alleviating salinity stress, as well as the enhancement of the nutritional qualities of wheat. This work uniquely combines both salinity stress adaptation and nanofortification strategies under one framework that filling crucial information gaps. Investigating the mechanisms underlying NPs interaction with plant systems is essential for designing effective, green, and cost-efficient nanotechnology tools for sustainable wheat production. In the long run, this knowledge will aid sustainable agricultural practices and food security worldwide.

摘要

盐胁迫是影响小麦生产最具挑战性的限制因素之一,它同时限制了小麦的产量和营养品质。小麦是最重要的主粮谷物之一,也是世界上相当一部分人口碳水化合物的主要来源,但由于盐胁迫,小麦的生产力受到了严重限制。这种胁迫会对种子萌发、营养生长、生殖器官发育、酶活性、光合作用光稳定性和激素平衡产生不利影响,最终导致氧化胁迫和作物产量的大幅损失。此外,小麦营养品质的下降进一步加剧了营养不良和粮食安全问题,凸显了采取有效缓解策略的必要性。尽管人们已经研究了各种方法,包括植物育种、基因工程和农艺管理,但这些方法都耗费人力、成本和时间。纳米技术是一种控制盐胁迫和改善作物生物强化的新颖、环保且高效的方法。基于纳米技术的产品(如纳米颗粒)的一些常见应用方法包括叶面喷施、土壤改良和种子引发,这些方法在提高耐盐胁迫能力、养分吸收和小麦产量方面显示出了巨大的潜力。本综述概述了纳米颗粒在缓解盐胁迫以及提高小麦营养品质方面的贡献程度。这项工作在一个框架下独特地结合了盐胁迫适应和纳米强化策略,填补了关键的信息空白。研究纳米颗粒与植物系统相互作用的潜在机制对于设计有效、绿色且经济高效的纳米技术工具以实现可持续小麦生产至关重要。从长远来看,这些知识将有助于全球的可持续农业实践和粮食安全。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6274/12272347/d22d7ab53405/fpls-16-1592866-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验