Yang Wei-Hua, Xu Yan-Wu, Sun Xing-Huai
Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, Shenzhen 518040, Guangdong Province, China.
School of Future Technology, South China University of Technology, Guangzhou 510641, Guangdong Province, China.
Int J Ophthalmol. 2025 Jul 18;18(7):1181-1196. doi: 10.18240/ijo.2025.07.01. eCollection 2025.
Glaucoma is an eye disease characterized by pathologically elevated intraocular pressure, optic nerve atrophy, and visual field defects, which can lead to irreversible vision loss. In recent years, the rapid development of artificial intelligence (AI) technology has provided new approaches for the early diagnosis and management of glaucoma. By classifying and annotating glaucoma-related images, AI models can learn and recognize the specific pathological features of glaucoma, thereby achieving automated imaging analysis and classification. Research on glaucoma imaging classification and annotation mainly involves color fundus photography (CFP), optical coherence tomography (OCT), anterior segment optical coherence tomography (AS-OCT), and ultrasound biomicroscopy (UBM) images. CFP is primarily used for the annotation of the optic cup and disc, while OCT is used for measuring and annotating the thickness of the retinal nerve fiber layer, and AS-OCT and UBM focus on the annotation of the anterior chamber angle structure and the measurement of anterior segment structural parameters. To standardize the classification and annotation of glaucoma images, enhance the quality and consistency of annotated data, and promote the clinical application of intelligent ophthalmology, this guideline has been developed. This guideline systematically elaborates on the principles, methods, processes, and quality control requirements for the classification and annotation of glaucoma images, providing standardized guidance for the classification and annotation of glaucoma images.
青光眼是一种以病理性眼压升高、视神经萎缩和视野缺损为特征的眼病,可导致不可逆的视力丧失。近年来,人工智能(AI)技术的快速发展为青光眼的早期诊断和管理提供了新途径。通过对青光眼相关图像进行分类和标注,AI模型可以学习并识别青光眼的特定病理特征,从而实现自动化成像分析和分类。青光眼成像分类与标注的研究主要涉及彩色眼底照相(CFP)、光学相干断层扫描(OCT)、眼前段光学相干断层扫描(AS-OCT)以及超声生物显微镜(UBM)图像。CFP主要用于视杯和视盘的标注,而OCT用于测量和标注视网膜神经纤维层的厚度,AS-OCT和UBM则专注于前房角结构的标注以及眼前段结构参数的测量。为规范青光眼图像的分类与标注,提高标注数据的质量和一致性,推动智能眼科的临床应用,特制定本指南。本指南系统阐述了青光眼图像分类与标注的原则、方法、流程及质量控制要求,为青光眼图像的分类与标注提供规范指导。