Suppr超能文献

人工智能应用的青光眼成像分类、标注及质量控制指南。

Guidelines for glaucoma imaging classification, annotation, and quality control for artificial intelligence applications.

作者信息

Yang Wei-Hua, Xu Yan-Wu, Sun Xing-Huai

机构信息

Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, Shenzhen 518040, Guangdong Province, China.

School of Future Technology, South China University of Technology, Guangzhou 510641, Guangdong Province, China.

出版信息

Int J Ophthalmol. 2025 Jul 18;18(7):1181-1196. doi: 10.18240/ijo.2025.07.01. eCollection 2025.

Abstract

Glaucoma is an eye disease characterized by pathologically elevated intraocular pressure, optic nerve atrophy, and visual field defects, which can lead to irreversible vision loss. In recent years, the rapid development of artificial intelligence (AI) technology has provided new approaches for the early diagnosis and management of glaucoma. By classifying and annotating glaucoma-related images, AI models can learn and recognize the specific pathological features of glaucoma, thereby achieving automated imaging analysis and classification. Research on glaucoma imaging classification and annotation mainly involves color fundus photography (CFP), optical coherence tomography (OCT), anterior segment optical coherence tomography (AS-OCT), and ultrasound biomicroscopy (UBM) images. CFP is primarily used for the annotation of the optic cup and disc, while OCT is used for measuring and annotating the thickness of the retinal nerve fiber layer, and AS-OCT and UBM focus on the annotation of the anterior chamber angle structure and the measurement of anterior segment structural parameters. To standardize the classification and annotation of glaucoma images, enhance the quality and consistency of annotated data, and promote the clinical application of intelligent ophthalmology, this guideline has been developed. This guideline systematically elaborates on the principles, methods, processes, and quality control requirements for the classification and annotation of glaucoma images, providing standardized guidance for the classification and annotation of glaucoma images.

摘要

青光眼是一种以病理性眼压升高、视神经萎缩和视野缺损为特征的眼病,可导致不可逆的视力丧失。近年来,人工智能(AI)技术的快速发展为青光眼的早期诊断和管理提供了新途径。通过对青光眼相关图像进行分类和标注,AI模型可以学习并识别青光眼的特定病理特征,从而实现自动化成像分析和分类。青光眼成像分类与标注的研究主要涉及彩色眼底照相(CFP)、光学相干断层扫描(OCT)、眼前段光学相干断层扫描(AS-OCT)以及超声生物显微镜(UBM)图像。CFP主要用于视杯和视盘的标注,而OCT用于测量和标注视网膜神经纤维层的厚度,AS-OCT和UBM则专注于前房角结构的标注以及眼前段结构参数的测量。为规范青光眼图像的分类与标注,提高标注数据的质量和一致性,推动智能眼科的临床应用,特制定本指南。本指南系统阐述了青光眼图像分类与标注的原则、方法、流程及质量控制要求,为青光眼图像的分类与标注提供规范指导。

相似文献

2
Optic nerve head and fibre layer imaging for diagnosing glaucoma.用于诊断青光眼的视神经乳头和纤维层成像。
Cochrane Database Syst Rev. 2015 Nov 30;2015(11):CD008803. doi: 10.1002/14651858.CD008803.pub2.
4
..
Int Ophthalmol. 2025 Jun 27;45(1):266. doi: 10.1007/s10792-025-03602-6.
9
Peripheral iridotomy for pigmentary glaucoma.色素性青光眼的周边虹膜切开术
Cochrane Database Syst Rev. 2016 Feb 12;2(2):CD005655. doi: 10.1002/14651858.CD005655.pub2.

本文引用的文献

2
Glaucomatous retinal ganglion cells: death and protection.青光眼性视网膜神经节细胞:死亡与保护
Int J Ophthalmol. 2025 Jan 18;18(1):160-167. doi: 10.18240/ijo.2025.01.20. eCollection 2025.
7
The application of artificial intelligence in glaucoma diagnosis and prediction.人工智能在青光眼诊断与预测中的应用。
Front Cell Dev Biol. 2023 May 4;11:1173094. doi: 10.3389/fcell.2023.1173094. eCollection 2023.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验