Suppr超能文献

用于心脏和胸部计算机断层扫描中自动钙评分的人工智能软件的验证

Validation of artificial intelligence software for automatic calcium scoring in cardiac and chest computed tomography.

作者信息

Hamelink I Iris, Nie Z Zhenhui, Severijn T E J Thom, van Tuinen M Marcel, van Ooijen P M A Peter, Kwee T C Thomas, Dorrius M D Monique, van der Harst P Pim, Vliegenthart R Rozemarijn

机构信息

Department of Radiology, University of Groningen, University Medical Center of Groningen 9713GZ Groningen, the Netherlands.

Department of Epidemiology, University of Groningen, University Medical Center of Groningen 9713GZ Groningen, the Netherlands.

出版信息

Eur J Radiol. 2025 Oct;191:112323. doi: 10.1016/j.ejrad.2025.112323. Epub 2025 Jul 16.

Abstract

OBJECTIVE

Coronary artery calcium scoring (CACS), i.e. quantification of Agatston (AS) or volume score (VS), can be time consuming. The aim of this study was to compare automated, artificial intelligence (AI)-based CACS to manual scoring, in cardiac and chest CT for lung cancer screening.

METHODS

We selected 684 participants (59 ± 4.8 years; 48.8 % men) who underwent cardiac and non-ECG-triggered chest CT, including 484 participants with AS > 0 on cardiac CT. AI-based results were compared to manual AS and VS, by assessing sensitivity and accuracy, intraclass correlation coefficient (ICC), Bland-Altman analysis and Cohen's kappa for classification in AS strata (0;1-99;100-299;≥300).

RESULTS

AI showed high CAC detection rate: 98.1% in cardiac CT (accuracy 97.1%) and 92.4% in chest CT (accuracy 92.1%). AI showed excellent agreement with manual AS (ICC:0.997 and 0.992) and manual VS (ICC:0.997 and 0.991), in cardiac CT and chest CT, respectively. In Bland-Altman analysis, there was a mean difference of 2.3 (limits of agreement (LoA):-42.7, 47.4) for AS on cardiac CT; 1.9 (LoA:-36.4, 40.2) for VS on cardiac CT; -0.3 (LoA:-74.8, 74.2) for AS on chest CT; and -0.6 (LoA:-65.7, 64.5) for VS on chest CT. Cohen's kappa was 0.952 (95%CI:0.934-0.970) for cardiac CT and 0.901 (95%CI:0.875-0.926) for chest CT, with concordance in 95.9 and 91.4% of cases, respectively.

CONCLUSION

AI-based CACS shows high detection rate and strong correlation compared to manual CACS, with excellent risk classification agreement. AI may reduce evaluation time and enable opportunistic screening for CAC on low-dose chest CT.

摘要

目的

冠状动脉钙化评分(CACS),即阿加斯顿评分(AS)或容积评分(VS)的量化,可能耗时较长。本研究的目的是在用于肺癌筛查的心脏和胸部CT中,比较基于人工智能(AI)的自动CACS与手动评分。

方法

我们选取了684名参与者(59±4.8岁;48.8%为男性),他们接受了心脏及非心电图触发的胸部CT检查,其中484名参与者的心脏CT显示AS>0。通过评估敏感性和准确性、组内相关系数(ICC)、布兰德-奥特曼分析以及AS分层(0;1-99;100-299;≥300)分类的科恩kappa系数,将基于AI的结果与手动AS和VS进行比较。

结果

AI显示出较高的CAC检测率:心脏CT中为98.1%(准确性97.1%),胸部CT中为92.4%(准确性92.1%)。AI与手动AS(ICC:0.997和0.992)以及手动VS(ICC:0.997和0.991)分别在心脏CT和胸部CT中显示出极佳的一致性。在布兰德-奥特曼分析中,心脏CT上AS的平均差异为2.3(一致性界限(LoA):-42.7,47.4);心脏CT上VS的平均差异为1.9(LoA:-36.4,40.2);胸部CT上AS的平均差异为-0.3(LoA:-74.8,74.2);胸部CT上VS的平均差异为-0.6(LoA:-65.7,64.5)。心脏CT的科恩kappa系数为0.952(95%CI:0.934-0.970),胸部CT的科恩kappa系数为0.901(95%CI:0.875-0.926),分别在95.9%和91.4%的病例中具有一致性。

结论

与手动CACS相比,基于AI的CACS显示出较高的检测率和强相关性,且风险分类一致性极佳。AI可能会减少评估时间,并能够在低剂量胸部CT上对CAC进行机会性筛查。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验