Zhang Jing, Liu Kefu, You Chenyang, Gong Jingjing
Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
Clin Imaging. 2025 Sep;125:110575. doi: 10.1016/j.clinimag.2025.110575. Epub 2025 Aug 4.
To evaluate the performance of artificial intelligence (AI)-based coronary artery calcium scoring (CACS) on non-electrocardiogram (ECG)-gated chest CT, using manual quantification as the reference standard, while characterizing per-vessel reliability and clinical risk classification impacts.
Retrospective study of 290 patients (June 2023-2024) with paired non-ECG-gated chest CT and ECG-gated cardiac CT (median time was 2 days). AI-based CACS and manual CACS (CACS_man) were compared using intraclass correlation coefficient (ICC) and weighted Cohen's kappa (3,1). Error types, anatomical distributions, and CACS of the lesions of individual arteries or segments were assessed in accordance with the Society of Cardiovascular Computed Tomography (SCCT) guidelines.
The total CACS of chest CT demonstrated excellent concordance with CACS_man (ICC = 0.87, 95 % CI 0.84-0.90). Non-ECG-gated chest showed a 7.5-fold increased risk misclassification rate compared to ECG-gated cardiac CT (41.4 % vs. 5.5 %), with 35.5 % overclassification and 5.9 % underclassification. Vessel-specific analysis revealed paradoxical reliability of the left anterior descending artery (LAD) due to stent misclassification in four cases (ICC = 0.93 on chest CT vs 0.82 on cardiac CT), while the right coronary artery (RCA) demonstrated suboptimal performance with ICCs ranging from 0.60 to 0.68. Chest CT exhibited higher false-positive (1.9 % vs 0.5 %) and false-negative rates (14.4 % vs 4.3 %). False positive mainly derived from image noise in proximal LAD/RCA (median CACS 5.97 vs 3.45) and anatomical error, while false negatives involved RCA microcalcifications (median CACS 2.64).
AI-based non-ECG-gated chest CT demonstrates utility for opportunistic screening but requires protocol optimization to address vessel-specific limitations and mitigate 41.4 % risk misclassification rates.
以手动定量为参考标准,评估基于人工智能(AI)的非心电图(ECG)门控胸部CT冠状动脉钙化评分(CACS)的性能,同时描述血管特异性可靠性和临床风险分类影响。
对290例患者(2023年6月至2024年)进行回顾性研究,这些患者同时接受了非ECG门控胸部CT和ECG门控心脏CT检查(中位时间为2天)。使用组内相关系数(ICC)和加权Cohen's kappa(3,1)比较基于AI的CACS和手动CACS(CACS_man)。根据心血管计算机断层扫描协会(SCCT)指南评估单个动脉或节段病变的错误类型、解剖分布和CACS。
胸部CT的总CACS与CACS_man显示出极好的一致性(ICC = 0.87,95% CI 0.84 - 0.90)。与ECG门控心脏CT相比,非ECG门控胸部的风险误分类率增加了7.5倍(41.4%对5.5%),其中35.5%为过度分类,5.9%为分类不足。血管特异性分析显示,由于4例支架误分类,左前降支(LAD)存在矛盾的可靠性(胸部CT的ICC = 0.93,心脏CT的ICC = 0.82),而右冠状动脉(RCA)的性能欠佳,ICC范围为0.60至0.68。胸部CT表现出更高的假阳性率(1.9%对0.5%)和假阴性率(14.4%对4.3%)。假阳性主要源于LAD/RCA近端的图像噪声(中位CACS 5.97对3.45)和解剖学错误,而假阴性涉及RCA微钙化(中位CACS 2.64)。
基于AI的非ECG门控胸部CT在机会性筛查中具有实用性,但需要优化方案以解决血管特异性限制并降低41.4%的风险误分类率。