Suppr超能文献

构建锚定在还原氧化石墨烯上的SnO/SnSe异质结构用于先进锂离子电池。

Constructing SnO/SnSe heterostructures anchored on reduced graphene oxide for advanced Lithium-ion batteries.

作者信息

Shen Ao, Shi Zhichen, Zhang Wenyuan, Zhai Yi, Feng Yongbao, Gong Wenbin, Xu Peng, Li Qiulong

机构信息

College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.

College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; School of Physics and Energy, Xuzhou University of Technology, Xuzhou 221018, China.

出版信息

J Colloid Interface Sci. 2025 Dec 15;700(Pt 2):138460. doi: 10.1016/j.jcis.2025.138460. Epub 2025 Jul 15.

Abstract

Tin-based compounds have an ultrahigh theoretical capacity and low oxidation-reduction potential, making them as a very important type of anode matrix for lithium-ion batteries (LIBs). Nevertheless, the enormous volume dilatation causes structural collapse, limiting its cyclic stability. Herein, a nanoscale SnO/SnSe@rGO has been designed, in which the interface of SnO/SnSe heterostructure generates a built-in electric field, improving charge transfer efficiency. And rGO, as a 3D interconnection network coating SnO/SnSe nanoparticles, improves conductivity and serves as a buffer medium for volume expansion. DFT calculations confirm that the formation of built-in electric field enhances the adsorption energy of Li and reduces the migration energy barrier. As expected, the initial capacity of the SnO/SnSe@rGO electrode can reach 1405.9 mAh g at 2.0 A g. The reversible capacity is 1459.1 mAh g at 0.1 A g after 50 cycles, with 78.1 % capacity retention. Finally, a SnO/SnSe@rGO//LiFePO (LFP) full battery was assembled, which exhibits a high capacity of 213.1 mAh g at 0.1 A g and energy density of 492.8 Wh kg at 270 W kg. The design of this nanoscale heterostructure provides a feasible strategy for developing LIBs anodes with enhanced capacity and extended lifespan.

摘要

锡基化合物具有超高的理论容量和低的氧化还原电位,使其成为锂离子电池(LIBs)非常重要的一类负极基体。然而,巨大的体积膨胀会导致结构坍塌,限制了其循环稳定性。在此,设计了一种纳米级的SnO/SnSe@rGO,其中SnO/SnSe异质结构的界面产生了内建电场,提高了电荷转移效率。并且,rGO作为包覆SnO/SnSe纳米颗粒的三维互连网络,提高了导电性,并作为体积膨胀的缓冲介质。密度泛函理论(DFT)计算证实,内建电场的形成增强了Li的吸附能并降低了迁移能垒。正如预期的那样,SnO/SnSe@rGO电极在2.0 A g下的初始容量可达1405.9 mAh g。在50次循环后,0.1 A g下的可逆容量为1459.1 mAh g,容量保持率为78.1%。最后,组装了一个SnO/SnSe@rGO//LiFePO(LFP)全电池,其在0.1 A g下表现出213.1 mAh g的高容量,在270 W kg下的能量密度为492.8 Wh kg。这种纳米级异质结构的设计为开发具有更高容量和更长寿命的LIBs负极提供了一种可行的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验