Suppr超能文献

吸附动力学:经典、分形还是分数阶?

Adsorption Kinetics: Classical, Fractal, or Fractional?

作者信息

Bakalis Evangelos, Zerbetto Francesco

机构信息

Dipartimento di Chimica "G. Ciamician", Università di Bologna, V. P. Gobetti 85, 40129 Bologna, Italy.

出版信息

Langmuir. 2025 Aug 5;41(30):19834-19844. doi: 10.1021/acs.langmuir.5c01726. Epub 2025 Jul 21.

Abstract

Adsorption-limited kinetics may be described by phenomenological pseudo-order models. Such models leverage on the general principle that the rate of change of the adsorbed material depends on some power of its concentration, and their solutions provide the quantity of adsorbed molecules per unit mass of the sorbent material as a function of time. The assumptions made about how the solute molecules (adsorbents) are distributed around the sorbent material and whether or not diffusion effects are present are crucial for defining the rate of change. In the first case, the homogeneous uniform distribution of solute molecules and the absence of diffusion effects are well-described by classical modeling (integer-order derivatives). In the second case, fractal modeling arises from a departure from homogeneous uniform distribution, time is apparently contracted, and diffusion effects are still absent. In the third case, deviation from both conditions leads to fractional modeling; unlike fractal modeling, there are memory effects that exert an action on a limited number of process steps. We present briefly solutions for various classical and fractal kinetic models that describe adsorption. For the first time, we present adsorption kinetics under the framework of fractional calculus. In particular, we provide detailed expressions for pseudo-first-order fractional kinetics, while for higher orders, recursive relations amenable to numerical treatment are given. Application of each model is discussed.

摘要

吸附受限动力学可用现象学的伪一级模型来描述。这类模型基于这样一个普遍原理:被吸附物质的变化速率取决于其浓度的某种幂次,其解给出了单位质量吸附剂材料上吸附分子的数量随时间的函数关系。关于溶质分子(吸附质)如何分布在吸附剂材料周围以及是否存在扩散效应的假设,对于定义变化速率至关重要。在第一种情况下,溶质分子的均匀分布以及不存在扩散效应可以用经典建模(整数阶导数)很好地描述。在第二种情况下,分形建模源于偏离均匀分布,时间明显收缩,且仍然不存在扩散效应。在第三种情况下,偏离这两种条件会导致分数阶建模;与分形建模不同,存在记忆效应,对有限数量的过程步骤产生作用。我们简要介绍描述吸附的各种经典和分形动力学模型的解。我们首次在分数阶微积分框架下给出吸附动力学。特别是,我们给出了伪一级分数动力学的详细表达式,而对于高阶情况,给出了适合数值处理的递归关系。讨论了每个模型的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d772/12333429/f721d2cb3eae/la5c01726_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验