文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于患者特定特征,运用机器学习的骨关节炎进展模式。

Osteoarthritis progression pattern based on patient specific characteristics using machine learning.

作者信息

Park Seong Yun, Kim Myeong Ju, Cho Joon Hee, Nam Hee Seung, Ho Jade Pei Yuik, Lee Yong Seuk

机构信息

Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, South Korea.

Center for Artificial Intelligence in Healthcare, Seoul National University Bundang Hospital, Healthcare Innovation Park, Seongnam-si, South Korea.

出版信息

NPJ Digit Med. 2025 Jul 21;8(1):464. doi: 10.1038/s41746-025-01878-7.


DOI:10.1038/s41746-025-01878-7
PMID:40691282
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12280102/
Abstract

This study aimed to identify key factors associated with different progression patterns of early osteoarthritis (OA) by developing a predictive model using patient-specific characteristics. From 2003 to 2017, data from 833 knees were analyzed. Demographic factors included age, body mass index, bone mineral density (BMD), metabolic diseases, and other comorbidities. Radiographic factors included joint space narrowing (JSN) and osteophyte formation grades. Three classification models were developed using logistic regression and a light gradient boosting machine: unicompartmental/tricompartmental OA, tricompartmental JSN-dominant OA, and tricompartmental osteophyte-dominant OA. Feature importance was evaluated using SHapley Additive exPlanations feature explanations. Patients with osteoporosis were likely to progress to tricompartmental OA with JSN, while those with a high BMD were likely to progress to unicompartmental OA. Metabolic disease-related OA was associated with tricompartmental OA involving large osteophytes. Identifying OA progression patterns and patient information may enable more effective personalized treatment and prevention strategies in the future.

摘要

本研究旨在通过利用患者特异性特征开发预测模型,确定与早期骨关节炎(OA)不同进展模式相关的关键因素。对2003年至2017年期间833个膝关节的数据进行了分析。人口统计学因素包括年龄、体重指数、骨密度(BMD)、代谢性疾病和其他合并症。影像学因素包括关节间隙变窄(JSN)和骨赘形成分级。使用逻辑回归和轻梯度提升机开发了三种分类模型:单髁/三髁OA、三髁JSN为主的OA和三髁骨赘为主的OA。使用SHapley加性解释特征解释来评估特征重要性。骨质疏松症患者可能进展为伴有JSN的三髁OA,而骨密度高的患者可能进展为单髁OA。代谢性疾病相关的OA与涉及大骨赘的三髁OA相关。识别OA进展模式和患者信息可能会在未来实现更有效的个性化治疗和预防策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bf9/12280102/e418039b4b24/41746_2025_1878_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bf9/12280102/a84d4806d7ad/41746_2025_1878_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bf9/12280102/8043e3729bae/41746_2025_1878_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bf9/12280102/7cf7c5aa019f/41746_2025_1878_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bf9/12280102/409ed9357791/41746_2025_1878_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bf9/12280102/d3530a3de753/41746_2025_1878_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bf9/12280102/e418039b4b24/41746_2025_1878_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bf9/12280102/a84d4806d7ad/41746_2025_1878_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bf9/12280102/8043e3729bae/41746_2025_1878_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bf9/12280102/7cf7c5aa019f/41746_2025_1878_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bf9/12280102/409ed9357791/41746_2025_1878_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bf9/12280102/d3530a3de753/41746_2025_1878_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bf9/12280102/e418039b4b24/41746_2025_1878_Fig6_HTML.jpg

相似文献

[1]
Osteoarthritis progression pattern based on patient specific characteristics using machine learning.

NPJ Digit Med. 2025-7-21

[2]
How Does the Subchondral Bone Density Distribution of the Distal Humerus Change Between Early and Advanced Stages of Osteoarthritis?

Clin Orthop Relat Res. 2024-7-1

[3]
Association of radiographic structure deformity phenotypes of knee OA to clinical symptoms and risk for progression: Proposing a modification of Kellgren-Lawrence grade - Data from the Osteoarthritis Initiative and the MOST study.

Osteoarthr Cartil Open. 2025-1-9

[4]
Human Infrapatellar Fat Pad Mesenchymal Stem Cell-derived Extracellular Vesicles Purified by Anion Exchange Chromatography Suppress Osteoarthritis Progression in a Mouse Model.

Clin Orthop Relat Res. 2024-7-1

[5]
Is Kinesiophobia Associated With Quality of Life, Level of Physical Activity, and Function in Older Adults With Knee Osteoarthritis?

Clin Orthop Relat Res. 2025-4-1

[6]
An interpretable machine learning approach for predicting and grading hip osteoarthritis using gait analysis.

BMC Musculoskelet Disord. 2025-7-1

[7]
Exercise for hand osteoarthritis.

Cochrane Database Syst Rev. 2017-1-31

[8]
Prediction of Insulin Resistance in Nondiabetic Population Using LightGBM and Cohort Validation of Its Clinical Value: Cross-Sectional and Retrospective Cohort Study.

JMIR Med Inform. 2025-6-13

[9]
Supervised Machine Learning Models for Predicting Sepsis-Associated Liver Injury in Patients With Sepsis: Development and Validation Study Based on a Multicenter Cohort Study.

J Med Internet Res. 2025-5-26

[10]
Utilizing metabolomics to identify potential biomarkers and perturbed metabolic pathways in osteoarthritis: A systematic review.

Semin Arthritis Rheum. 2023-4

引用本文的文献

[1]
Integrative machine learning models predict prostate cancer diagnosis and biochemical recurrence risk: Advancing precision oncology.

NPJ Digit Med. 2025-8-16

本文引用的文献

[1]
The Impact of Machine Learning on Total Joint Arthroplasty Patient Outcomes: A Systemic Review.

J Arthroplasty. 2023-10

[2]
Prediction of progression rate and fate of osteoarthritis: Comparison of machine learning algorithms.

J Orthop Res. 2023-3

[3]
Osteoarthritis endotype discovery via clustering of biochemical marker data.

Ann Rheum Dis. 2022-5

[4]
Machine learning based texture analysis of patella from X-rays for detecting patellofemoral osteoarthritis.

Int J Med Inform. 2022-1

[5]
Epidemiology of osteoarthritis.

Osteoarthritis Cartilage. 2022-2

[6]
Osteoporosis is associated with varus deformity in postmenopausal women with knee osteoarthritis: a cross-sectional study.

BMC Musculoskelet Disord. 2021-8-14

[7]
Truncal Changes in Patients Suffering Severe Hip or Knee Osteoarthritis: A Surface Topography Study.

Clin Orthop Surg. 2021-6

[8]
Associations between the radiographic phenotypes and the presence of metabolic syndrome in patients with knee osteoarthritis.

Turk J Med Sci. 2021-10

[9]
Relationship of Bone Mineral Density and Knee Osteoarthritis (Kellgren-Lawrence Grade): Fifth Korea National Health and Nutrition Examination Survey.

Clin Orthop Surg. 2021-3

[10]
Does Knee Arthroscopy for Treatment of Meniscal Damage with Osteoarthritis Delay Knee Replacement Compared to Physical Therapy Alone?

Clin Orthop Surg. 2020-6-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索