Suppr超能文献

整合机器学习模型可预测前列腺癌诊断和生化复发风险:推动精准肿瘤学发展。

Integrative machine learning models predict prostate cancer diagnosis and biochemical recurrence risk: Advancing precision oncology.

作者信息

Wang Yaxuan, Zhu Haixia, Ren Jianlan, Ren Minghua

机构信息

Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.

Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, Nantong, 226361, China.

出版信息

NPJ Digit Med. 2025 Aug 16;8(1):524. doi: 10.1038/s41746-025-01930-6.

Abstract

Prostate cancer (PCa) ranks among the most prevalent cancers in men worldwide. Biochemical recurrence (BCR) presents a major clinical challenge in PCa management, with significant prognostic heterogeneity observed among patients post-recurrence. This study aimed to develop machine learning models for predicting both the diagnosis and prognosis of PCa patients. Using WGCNA, we initially identified 16 BCR-related target genes. Cluster analysis revealed these genes were significantly associated with PCa prognosis, drug sensitivity, and immune infiltration. We constructed a robust diagnostic model integrating multiple machine learning algorithms, demonstrating strong predictive capability for PCa. Furthermore, a BCR-related prognostic model built using the LASSO algorithm also yielded satisfactory performance. Among the differentially expressed BCR-associated prognostic genes, COMP emerged as a critical regulatory factor. Both in vitro and in vivo experiments confirmed COMP's role in influencing PCa progression. Additionally, COMP demonstrates significant potential as a dual biomarker for both the diagnosis and recurrence prediction of PCa.

摘要

前列腺癌(PCa)是全球男性中最常见的癌症之一。生化复发(BCR)是PCa管理中的一项重大临床挑战,复发后患者之间存在显著的预后异质性。本研究旨在开发用于预测PCa患者诊断和预后的机器学习模型。使用加权基因共表达网络分析(WGCNA),我们最初鉴定出16个与BCR相关的靶基因。聚类分析表明,这些基因与PCa预后、药物敏感性和免疫浸润显著相关。我们构建了一个整合多种机器学习算法的强大诊断模型,对PCa具有很强的预测能力。此外,使用套索(LASSO)算法构建的与BCR相关的预后模型也表现出令人满意的性能。在差异表达的与BCR相关的预后基因中,肌腱蛋白-C(COMP)成为关键调节因子。体外和体内实验均证实COMP在影响PCa进展中的作用。此外,COMP作为PCa诊断和复发预测的双重生物标志物具有显著潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验