Suppr超能文献

利用聚类生成模型集成改进抗体及其复合物的预测。

Improved prediction of antibody and their complexes with clustered generative modelling ensembles.

作者信息

Xu Xiaotong, Giulini Marco, Bonvin Alexandre M J J

机构信息

Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Bijvoet Centre for Biomolecular Research, Utrecht, 3584 CH, The Netherlands.

出版信息

Bioinform Adv. 2025 Jul 3;5(1):vbaf161. doi: 10.1093/bioadv/vbaf161. eCollection 2025.

Abstract

MOTIVATION

Gaining structural insights into antibody-antigen complexes is crucial for understanding antigen recognition mechanisms and advancing therapeutic antibody design. However, accurate prediction of the structure of highly variable complementarity-determining region 3 on the antibody heavy chain (CDR-H3 loop) remains a significant challenge due to its increased length and conformational variability. While AlphaFold2-multimer (AF2) has made substantial progress in protein structure prediction, its application on antibodies and antibody-antigen complexes is limited by the weak evolutionary signals in the CDR region and the lack of structural diversity in its output.

RESULTS

To address these limitations, we propose a workflow that combines AlphaFlow to generate ensembles of potential loop conformations with integrative modelling of antibody-antigen complexes with HADDOCK. Improving the structural diversity of the H3 loop increases the success rate of subsequent docking tasks. Our analysis shows that while AF2 generally predicts accurate antibody structures, it struggles with the H3 loop. In cases where AF2 mispredicts the loop, we leverage AlphaFlow to generate ensembles of loop conformations via score-based flow matching, followed by clustering to produce a structurally diverse set of models. We demonstrate that these ensembles significantly improve antibody-antigen docking performance compared to the standard AF2 ensembles.

AVAILABILITY AND IMPLEMENTATION

The input datasets and codes involved in this research are available at https://github.com/haddocking/alphaflow-antibodies. All the resulting modelling data are available from Zenodo (https://zenodo.org/records/14906314).

摘要

动机

深入了解抗体 - 抗原复合物的结构对于理解抗原识别机制和推进治疗性抗体设计至关重要。然而,由于抗体重链上高度可变的互补决定区3(CDR - H3环)长度增加且构象多变,准确预测其结构仍然是一项重大挑战。虽然AlphaFold2 - 多聚体(AF2)在蛋白质结构预测方面取得了显著进展,但其在抗体和抗体 - 抗原复合物上的应用受到CDR区域中微弱进化信号以及其输出结构多样性不足的限制。

结果

为了解决这些限制,我们提出了一种工作流程,该流程结合AlphaFlow生成潜在环构象的集合,并与HADDOCK进行抗体 - 抗原复合物的整合建模。提高H3环的结构多样性可提高后续对接任务的成功率。我们的分析表明,虽然AF2通常能准确预测抗体结构,但在H3环上存在困难。在AF2错误预测环的情况下,我们利用AlphaFlow通过基于分数的流匹配生成环构象的集合,然后进行聚类以产生一组结构多样的模型。我们证明,与标准的AF2集合相比,这些集合显著提高了抗体 - 抗原对接性能。

可用性和实现

本研究中涉及的输入数据集和代码可在https://github.com/haddocking/alphaflow - antibodies获取。所有生成的建模数据可从Zenodo(https://zenodo.org/records/14906314)获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d74/12279294/a692a1023b44/vbaf161f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验