Avanzi Elisabetta, Di Sieno Laura, Mora Alberto Dalla, Spinelli Lorenzo, Torricelli Alessandro
Politecnico di Milano, Dipartimento di Fisica, Milan, Italy.
Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milan, Italy.
J Biomed Opt. 2025 Jul;30(7):075002. doi: 10.1117/1.JBO.30.7.075002. Epub 2025 Jul 21.
The spatially resolved spectroscopy (SRS) approach is widely used in continuous wave near-infrared spectroscopy to estimate tissue oxygen saturation in the skeletal muscle and cerebral cortex. The extension of the SRS approach to the time domain (TD) has never been proposed. We hypothesize that the time-domain spatially resolved spectroscopy (TD SRS) approach, relying on simple models and linear fit, avoiding nonlinear model-based analysis approaches, could be able to assess the homogeneity of the scattering of the explored tissue.
We aim to explore the potential of the TD SRS approach for estimating from the spatial derivative of the measured signal in a homogeneous and in a two-layer medium and by considering also the effect of the instrument response function (IRF).
A theoretical expression for depending on the spatial derivative of the attenuation is derived. Then, numerical simulations are conducted using solutions of the radiative transfer equation under the diffusion approximation. We consider a reflectance geometry with source-detector distance in the range 1 to 5 cm in 0.5 cm step, either in a homogenous semi-infinite or two-layer diffusive medium. Convolution with a real IRF is also carried out to mimic experimental scenarios.
In a homogeneous medium, the TD SRS approach is able to retrieve over a large range of values, being minimally affected by the IRF. In a two-layer medium, the TD SRS approach can only provide information on the changes of with depth but fails to provide a robust estimate of the absolute value of in either of the two layers. Moreover, the IRF can greatly affect the results in the case of the two-layer medium.
The TD SRS approach can be a simple way to estimate spatial changes of but not the absolute value of . Care should be taken to use a TD system with proper IRF.
空间分辨光谱法(SRS)在连续波近红外光谱中被广泛用于估计骨骼肌和大脑皮层中的组织氧饱和度。从未有人提出将SRS方法扩展到时间域(TD)。我们假设,时域空间分辨光谱法(TD SRS)依靠简单模型和线性拟合,避免基于非线性模型的分析方法,能够评估被探测组织散射的均匀性。
我们旨在探索TD SRS方法通过测量信号的空间导数在均匀介质和双层介质中估计[具体参数未给出,推测为某个与组织相关的参数]的潜力,同时考虑仪器响应函数(IRF)的影响。
推导了一个依赖于衰减空间导数的[具体参数未给出,推测为某个与组织相关的参数]的理论表达式。然后,在扩散近似下使用辐射传输方程的解进行数值模拟。我们考虑在均匀半无限或双层扩散介质中,源 - 探测器距离在1至5厘米范围内以0.5厘米步长的反射几何结构。还进行了与实际IRF的卷积以模拟实验场景。
在均匀介质中,TD SRS方法能够在很大的[具体参数未给出,推测为某个与组织相关的参数]值范围内进行反演,受IRF的影响最小。在双层介质中,TD SRS方法只能提供[具体参数未给出,推测为某个与组织相关的参数]随深度变化的信息,但无法对两层中任何一层的[具体参数未给出,推测为某个与组织相关的参数]绝对值进行可靠估计。此外,在双层介质的情况下,IRF会极大地影响结果。
TD SRS方法可以是估计[具体参数未给出,推测为某个与组织相关的参数]空间变化的一种简单方法,但不能估计[具体参数未给出,推测为某个与组织相关的参数]的绝对值。使用具有适当IRF的TD系统时应谨慎。