Markow Zachary E, Trobaugh Jason W, Richter Edward J, Tripathy Kalyan, Rafferty Sean M, Svoboda Alexandra M, Schroeder Mariel L, Burns-Yocum Tracy M, Bergonzi Karla M, Chevillet Mark A, Mugler Emily M, Eggebrecht Adam T, Culver Joseph P
Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO, 63110, USA.
Department of Electrical and Systems Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO, 63130, USA.
Sci Rep. 2025 Jan 25;15(1):3175. doi: 10.1038/s41598-025-85858-7.
Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (~ 13 mm) than sparse fNIRS (~ 30 mm) and therefore provide higher image quality, with spatial resolution ~ 1/2 that of fMRI, when using the several source-detector distances (13-40 mm) afforded by the HD-DOT grid. Herein, simulations indicated reducing inter-optode spacing to 6.5 mm, creating a higher-density grid with more source-detector distances, would further improve image quality and noise-resolution tradeoff, with diminishing returns below 6.5 mm. We then constructed an ultra-high-density DOT system (6.5-mm spacing) with 140 dB dynamic range that imaged stimulus-evoked activations with 30-50% higher spatial resolution and repeatable multi-focal activity with excellent agreement with participant-matched fMRI. Further, this system decoded visual stimulus position with 19-35% lower error than previous HD-DOT, throughout occipital cortex.
功能磁共振成像(fMRI)极大地推动了无创性人脑图谱绘制和解码技术的发展。功能近红外光谱(fNIRS)和高密度扩散光学断层扫描(HD-DOT)能够像fMRI一样,在脑表面非侵入性地测量与脑活动相关的血氧波动,它们使用的设备更为轻便,避免了fMRI在人体工程学和后勤方面的限制。HD-DOT网格的光极间距(约13毫米)比稀疏fNIRS(约30毫米)更小,因此图像质量更高,当使用HD-DOT网格提供的几种源探测器距离(13 - 40毫米)时,其空间分辨率约为fMRI的1/2。在此,模拟结果表明,将光极间距减小到6.5毫米,创建一个具有更多源探测器距离的更高密度网格,将进一步改善图像质量和噪声分辨率之间的权衡,而在6.5毫米以下收益递减。然后,我们构建了一个动态范围为140分贝的超高密度DOT系统(间距6.5毫米),该系统对刺激诱发的激活进行成像时,空间分辨率提高了30 - 50%,并且能够重复呈现多焦点活动,与参与者匹配的fMRI结果具有高度一致性。此外,在整个枕叶皮层,该系统对视觉刺激位置进行解码时,误差比之前的HD-DOT低19 - 35%。