Suppr超能文献

用于人类脑图谱绘制的扩散光学断层扫描中的超高密度成像阵列可提高图像质量和解码性能。

Ultra high density imaging arrays in diffuse optical tomography for human brain mapping improve image quality and decoding performance.

作者信息

Markow Zachary E, Trobaugh Jason W, Richter Edward J, Tripathy Kalyan, Rafferty Sean M, Svoboda Alexandra M, Schroeder Mariel L, Burns-Yocum Tracy M, Bergonzi Karla M, Chevillet Mark A, Mugler Emily M, Eggebrecht Adam T, Culver Joseph P

机构信息

Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO, 63110, USA.

Department of Electrical and Systems Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO, 63130, USA.

出版信息

Sci Rep. 2025 Jan 25;15(1):3175. doi: 10.1038/s41598-025-85858-7.

Abstract

Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (~ 13 mm) than sparse fNIRS (~ 30 mm) and therefore provide higher image quality, with spatial resolution ~ 1/2 that of fMRI, when using the several source-detector distances (13-40 mm) afforded by the HD-DOT grid. Herein, simulations indicated reducing inter-optode spacing to 6.5 mm, creating a higher-density grid with more source-detector distances, would further improve image quality and noise-resolution tradeoff, with diminishing returns below 6.5 mm. We then constructed an ultra-high-density DOT system (6.5-mm spacing) with 140 dB dynamic range that imaged stimulus-evoked activations with 30-50% higher spatial resolution and repeatable multi-focal activity with excellent agreement with participant-matched fMRI. Further, this system decoded visual stimulus position with 19-35% lower error than previous HD-DOT, throughout occipital cortex.

摘要

功能磁共振成像(fMRI)极大地推动了无创性人脑图谱绘制和解码技术的发展。功能近红外光谱(fNIRS)和高密度扩散光学断层扫描(HD-DOT)能够像fMRI一样,在脑表面非侵入性地测量与脑活动相关的血氧波动,它们使用的设备更为轻便,避免了fMRI在人体工程学和后勤方面的限制。HD-DOT网格的光极间距(约13毫米)比稀疏fNIRS(约30毫米)更小,因此图像质量更高,当使用HD-DOT网格提供的几种源探测器距离(13 - 40毫米)时,其空间分辨率约为fMRI的1/2。在此,模拟结果表明,将光极间距减小到6.5毫米,创建一个具有更多源探测器距离的更高密度网格,将进一步改善图像质量和噪声分辨率之间的权衡,而在6.5毫米以下收益递减。然后,我们构建了一个动态范围为140分贝的超高密度DOT系统(间距6.5毫米),该系统对刺激诱发的激活进行成像时,空间分辨率提高了30 - 50%,并且能够重复呈现多焦点活动,与参与者匹配的fMRI结果具有高度一致性。此外,在整个枕叶皮层,该系统对视觉刺激位置进行解码时,误差比之前的HD-DOT低19 - 35%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/413c/11762274/12cd5673e0fd/41598_2025_85858_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验