Mageto Lydia M, Aboge Gabriel Oluga, Mekuria Zelalem H, Gathura Peter, Juma John, Mugo Michael, Kebenei Collins Kipkorir, Imoli Diana, Ongadi Beatrice Atieno, Kering Kelvin, Mbae Cecilia Kathure, Kariuki Samuel
Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya.
Washington State University, Global Health Kenya, Nairobi, Kenya.
Front Microbiol. 2025 Jul 7;16:1603736. doi: 10.3389/fmicb.2025.1603736. eCollection 2025.
Cholera remains a public health challenge in Kenya. To better understand its dynamics, we analyzed genomes from clinical and environmental samples collected during the 2022-2023 outbreak. These strains were compared with historical genomes from Kenya, Uganda, Tanzania, and Haiti to inform strategies for cholera prevention, control, and elimination in Kenya.
Clinical (stool) and environmental (wastewater, drinking water, and household effluent) samples were collected from Nairobi county. Samples were analyzed for using culture and real time PCR. The environmental ( = 17) and clinical ( = 70) isolates were then subjected to phenotypic antimicrobial susceptibility testing using the Kirby-Bauer disk diffusion method. Whole genome sequencing was employed to characterize the genome, detect antimicrobial resistance genes, virulence factors, and mobile genetic elements. Phylogenetic analysis was performed to assess the genetic relationship and diversity of isolates from 2022 to 2023 outbreak, comparing them with isolates from historical outbreaks.
Clinical isolates carried key virulence genes (, and ) and were 100% resistant to multiple antibiotics, including ampicillin, cefotaxime, ceftriaxone, and cefpodoxime, but remained susceptible to gentamicin and chloramphenicol. In contrast, environmental isolates lacked gene but harbored , and , showing variable antibiotic resistance (59% to ampicillin, 41% to trimethoprim-sulfamethoxazole, and 47% to nalidixic acid). All clinical isolates from 2022 to 2023 outbreak harbored IncA/C2 plasmids and several antimicrobial resistance genes including . Phylogenetic analysis revealed high genetic diversity in environmental strains, clustering outside the 7th pandemic El Tor lineage, while clinical isolates were highly clonal. Genomes from 2022 to 2023 outbreak were closely related to Kenyan cholera outbreak genomes from 2016 (15 single nucleotide polymorphisms, T13 lineage).
The 2022-2023 outbreak likely resulted from re-emergence of previously circulating strains rather than a new introduction. While the role of environmental reservoirs as a source of human infection remains unclear in our study, environmental isolates possess virulent and antimicrobial resistance genes that may spread via horizontal gene transfer. This highlights the need for continuous genomic surveillance to monitor evolution, track transmission patterns, and mitigate the spread of antimicrobial resistance.
霍乱仍是肯尼亚面临的一项公共卫生挑战。为了更好地了解其动态变化,我们分析了在2022 - 2023年疫情期间采集的临床和环境样本的基因组。将这些菌株与来自肯尼亚、乌干达、坦桑尼亚和海地的历史基因组进行比较,以为肯尼亚霍乱的预防、控制和消除策略提供依据。
从内罗毕县采集临床(粪便)和环境(废水、饮用水和家庭污水)样本。使用培养法和实时荧光定量PCR对样本进行分析。然后,采用 Kirby - Bauer 纸片扩散法对17株环境分离株和70株临床分离株进行表型抗菌药物敏感性测试。采用全基因组测序来鉴定基因组特征、检测抗菌药物耐药基因、毒力因子和可移动遗传元件。进行系统发育分析以评估2022年至2023年疫情分离株的遗传关系和多样性,并将它们与历史疫情的分离株进行比较。
临床分离株携带关键毒力基因(ctxA、ctxB和tcpA),并且对多种抗生素100%耐药,包括氨苄西林、头孢噻肟、头孢曲松和头孢泊肟,但对庆大霉素和氯霉素仍敏感。相比之下,环境分离株缺乏ctxA基因,但携带tcpA、toxR和toxS,显示出不同的抗生素耐药性(对氨苄西林耐药率为59%,对甲氧苄啶 - 磺胺甲恶唑耐药率为41%,对萘啶酸耐药率为47%)。2022年至2023年疫情的所有临床分离株都携带IncA/C2质粒和几个抗菌药物耐药基因,包括blaTEM-1、blaCTX-M-15和tet(A)。系统发育分析显示环境菌株具有高度的遗传多样性,聚集在第七次大流行埃尔托谱系之外,而临床分离株具有高度的克隆性。2022年至2023年疫情的基因组与2016年肯尼亚霍乱疫情基因组密切相关(15个单核苷酸多态性,T13谱系)。
2022 - 2023年疫情可能是由先前传播的菌株重新出现导致的,而非新引入的菌株。虽然在我们的研究中环境储存库作为人类感染源的作用仍不清楚,但环境分离株具有可能通过水平基因转移传播的毒力和抗菌药物耐药基因。这凸显了持续进行基因组监测以监测霍乱进化、追踪传播模式和减轻抗菌药物耐药性传播的必要性。