DeRoo Jacob B, Shrestha Rojina, Jones Alec, Rajendran Deepa, Thai Jonathan E, Tuttle Robert R, Snow Christopher D, Reynolds Melissa M
School of Biomedical Engineering, Colorado State University, USA.
Cell and Molecular Biology, Colorado State University, USA.
J Mater Chem B. 2025 Jul 23. doi: 10.1039/d5tb00425j.
Metal-organic frameworks (MOFs) exhibit promising catalytic properties for applications in environmental cleansing, drug delivery, and chemical warfare agent detoxification. However, their broad adoption is hindered by poor structural stability in biologically relevant (aqueous) conditions. Protein crystals, by contrast, offer exceptional environmental resilience, particularly in aqueous and intracellular environments. In this study, we developed a hybrid material combining two example MOFs (UiO-67 and CuBTC) with a porous protein crystal with an exceptionally large pore diameter (13 nm). These hybrid materials were characterized single-crystal X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and inductively coupled plasma atomic emission spectroscopy confirmed the successful embedding of MOFs within the protein crystal matrix. With the foundation of these hybrid materials made, expansion of this platform of materials will enable options for tackling challenging problems.
金属有机框架材料(MOFs)在环境净化、药物递送和化学战剂解毒等应用中展现出了颇具前景的催化性能。然而,在生物相关(水性)条件下,其较差的结构稳定性阻碍了它们的广泛应用。相比之下,蛋白质晶体具有出色的环境耐受性,尤其是在水性和细胞内环境中。在本研究中,我们开发了一种混合材料,它将两种示例性MOFs(UiO - 67和CuBTC)与一种孔径特别大(13纳米)的多孔蛋白质晶体相结合。通过单晶X射线衍射、扫描电子显微镜、透射电子显微镜和电感耦合等离子体原子发射光谱对这些混合材料进行了表征,证实了MOFs成功嵌入蛋白质晶体基质中。基于这些混合材料的制备,拓展这个材料平台将为解决具有挑战性的问题提供更多选择。