Tez Mesut
Department of Surgery, University of Health Sciences, Ankara City Hospital, Ankara 06800, Türkiye.
World J Gastrointest Oncol. 2025 Jul 15;17(7):108175. doi: 10.4251/wjgo.v17.i7.108175.
Computed tomography-based deep learning radiomics provides a novel, noninvasive approach to predicting the tumor immune microenvironment in colorectal cancer, revolutionizing precision oncology. The retrospective study by Zhou analyzed preoperative computed tomography scans from 315 patients using convolutional neural networks, achieving robust predictive performance (area under the curve: 0.851-0.892) for critical tumor immune microenvironment features, such as tumor-stroma ratio and lymphocyte infiltration, without requiring invasive biopsies. This editorial explores how this technique advances personalized immunotherapy, chemotherapy, and targeted therapies; challenges conventional oncology practices; and paves the way for a future of precision medicine. By integrating advanced imaging with immune profiling, deep learning radiomics redefines colorectal cancer management, highlighting the need to re-evaluate the interplay of technology, biology, and ethics in gastrointestinal oncology.
基于计算机断层扫描的深度学习放射组学为预测结直肠癌的肿瘤免疫微环境提供了一种全新的非侵入性方法,给精准肿瘤学带来了变革。周的回顾性研究使用卷积神经网络分析了315例患者的术前计算机断层扫描,对于关键的肿瘤免疫微环境特征,如肿瘤-基质比和淋巴细胞浸润,实现了强大的预测性能(曲线下面积:0.851 - 0.892),且无需进行侵入性活检。这篇社论探讨了该技术如何推动个性化免疫治疗、化疗和靶向治疗;挑战传统肿瘤学实践;并为精准医学的未来铺平道路。通过将先进成像与免疫分析相结合,深度学习放射组学重新定义了结直肠癌的管理,凸显了在胃肠肿瘤学中重新评估技术、生物学和伦理之间相互作用的必要性。