Zhou Chuan, Zhang Yun-Feng, Yang Zhi-Jun, Huang Yu-Qian, Da Ming-Xu
The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu Province, China.
NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China.
World J Gastrointest Oncol. 2025 May 15;17(5):106103. doi: 10.4251/wjgo.v17.i5.106103.
Colorectal cancer (CRC) is a leading cause of cancer-related death globally, with the tumor immune microenvironment (TIME) influencing prognosis and immunotherapy response. Current TIME evaluation relies on invasive biopsies, limiting its clinical application. This study hypothesized that computed tomography (CT)-based deep learning (DL) radiomics models can non-invasively predict key TIME biomarkers: Tumor-stroma ratio (TSR), tumor-infiltrating lymphocytes (TILs), and immune score (IS).
To develop a non-invasive DL approach using preoperative CT radiomics to evaluate TIME components in CRC patients.
In this retrospective study, preoperative CT images of 315 pathologically confirmed CRC patients (220 in training cohort and 95 in validation cohort) were analyzed. Manually delineated regions of interest were used to extract DL features. Predictive models (DenseNet-121/169) for TSR, TILs, IS, and TIME classification were constructed. Performance was evaluated receiver operating characteristic curves, calibration curves, and decision curve analysis (DCA).
The DL-DenseNet-169 model achieved area under the curve (AUC) values of 0.892 [95% confidence interval (CI): 0.828-0.957] for TSR and 0.772 (95%CI: 0.674-0.870) for TIME score. The DenseNet-121 model yielded AUC values of 0.851 (95%CI: 0.768-0.933) for TILs and 0.852 (95%CI: 0.775-0.928) for IS. Calibration curves demonstrated strong prediction-observation agreement, and DCA confirmed clinical utility across threshold probabilities ( < 0.05 for all models).
CT-based DL radiomics provides a reliable non-invasive method for preoperative TIME evaluation, enabling personalized immunotherapy strategies in CRC management.
结直肠癌(CRC)是全球癌症相关死亡的主要原因,肿瘤免疫微环境(TIME)影响预后和免疫治疗反应。目前对TIME的评估依赖于侵入性活检,限制了其临床应用。本研究假设基于计算机断层扫描(CT)的深度学习(DL)放射组学模型可以无创预测关键的TIME生物标志物:肿瘤-基质比(TSR)、肿瘤浸润淋巴细胞(TILs)和免疫评分(IS)。
开发一种使用术前CT放射组学的无创DL方法来评估CRC患者的TIME成分。
在这项回顾性研究中,分析了315例经病理证实的CRC患者(训练队列220例,验证队列95例)的术前CT图像。使用手动勾勒的感兴趣区域提取DL特征。构建了TSR、TILs、IS和TIME分类的预测模型(DenseNet-121/169)。通过受试者操作特征曲线、校准曲线和决策曲线分析(DCA)评估性能。
DL-DenseNet-169模型对TSR的曲线下面积(AUC)值为0.892[95%置信区间(CI):0.828-0.957],对TIME评分的AUC值为0.772(95%CI:0.674-0.870)。DenseNet-121模型对TILs的AUC值为0.851(95%CI:0.768-0.933),对IS的AUC值为0.852(95%CI:0.775-0.928)。校准曲线显示出很强的预测-观察一致性,DCA证实了所有模型在阈值概率范围内的临床实用性(所有模型P<0.05)。
基于CT的DL放射组学为术前TIME评估提供了一种可靠的无创方法,能够在CRC管理中制定个性化免疫治疗策略。