Xiong Zichao, Zhang Zhen, Cheng Shaodan, Liao Shaohua
Department of Rehabilitation, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200050, P.R. China.
Department of Rehabilitation, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.
Oncol Lett. 2025 Jul 9;30(3):436. doi: 10.3892/ol.2025.15182. eCollection 2025 Sep.
Pancreatic ductal adenocarcinoma (PDAC) represents a particularly aggressive and highly malignant neoplasm, characterized by its unfavorable prognosis and restricted treatment alternatives. The present study aimed to use bioinformatics methodologies to assess transcriptomic data sourced from The Cancer Genome Atlas and the Gene Expression Omnibus to pinpoint biomarkers associated with manganese metabolism that may forecast outcomes in PDAC. Utilizing differential expression analysis, Least Absolute Shrinkage and Selection Operator regression and multivariable Cox regression, 12 essential genes were identified that demonstrate notable associations with the prognosis of PDAC (Natriuretic Peptide A, Kynureninase, Integrin Subunit β6, Cytochrome P450 Family 27 Subfamily A Member 1, C-X-C Motif Chemokine Ligand 10, Protein Phosphatase 2 Regulatory Subunit Bβ, MET Proto-Oncogene Receptor Tyrosine Kinase, Matrix Metalloproteinase 3, Keratin 19, ATPase Na/K Transporting Subunit α3, Pyridoxal Phosphatase and Interleukin 1 Receptor Accessory Protein Like 2). The validation of these genes was performing using both a training cohort and external datasets (GSE62452 and GSE28735), demonstrating the robustness of the model with area under the curve values of 0.82 and 0.83 in the training set and the external validation cohort, respectively. The results of the present study further elucidated the molecular processes underlying PDAC and highlight the crucial importance of manganese metabolism in its development. These biomarkers may provide significant prognostic insights and facilitate the advancement of targeted therapeutic strategies for PDAC.
胰腺导管腺癌(PDAC)是一种特别侵袭性和高度恶性的肿瘤,其特点是预后不良且治疗选择有限。本研究旨在使用生物信息学方法评估来自癌症基因组图谱和基因表达综合数据库的转录组数据,以确定与锰代谢相关的生物标志物,这些标志物可能预测PDAC的预后。通过差异表达分析、最小绝对收缩和选择算子回归以及多变量Cox回归,确定了12个与PDAC预后显著相关的关键基因(心钠素A、犬尿氨酸酶、整合素亚基β6、细胞色素P450家族27亚家族A成员1、C-X-C基序趋化因子配体10、蛋白磷酸酶2调节亚基Bβ、MET原癌基因受体酪氨酸激酶、基质金属蛋白酶3、角蛋白19、ATP酶Na/K转运亚基α3、磷酸吡哆醛酶和白细胞介素1受体辅助蛋白样2)。使用训练队列和外部数据集(GSE62452和GSE28735)对这些基因进行了验证,结果表明该模型具有稳健性,训练集和外部验证队列中的曲线下面积值分别为0.82和0.83。本研究结果进一步阐明了PDAC的分子机制,并突出了锰代谢在其发展中的关键重要性。这些生物标志物可能提供重要的预后见解,并促进PDAC靶向治疗策略的发展。