Suppr超能文献

转录组分析揭示海藻糖在谷子幼苗响应聚对苯二甲酸乙二酯纳米塑料处理中的作用

Transcriptome Analysis Reveals the Role of Trehalose in Response to Polyethylene Terephthalate Nanoplastics Treatment in Foxtail Millet () Seedlings.

作者信息

Du Shan, Guo Yue, Tanimura Manabu Wen-Liu, Bai Jiaqi, Zheng Jie, Liu Liwen, Yang Pu, Zhang Lizhen, Zhang Ben

机构信息

School of Life Science Shanxi University Taiyuan Shanxi China.

Shanxi Key Laboratory for Research and Development of Regional Plants Shanxi University Taiyuan Shanxi Province China.

出版信息

Food Sci Nutr. 2025 Jul 21;13(7):e70593. doi: 10.1002/fsn3.70593. eCollection 2025 Jul.

Abstract

Foxtail millet (), a drought-tolerant C4 model plant, faces increasing threats from polyethylene terephthalate (PET) nanoplastics in agricultural ecosystems. While prior studies indicate that PET nanoplastics induce reactive oxygen species (ROS) accumulation and impair crop productivity, the physiological mechanisms underlying plant responses remain unclear. This study investigates the role of trehalose metabolism in mitigating PET nanoplastic stress in foxtail millet. Transcriptome sequencing of seedlings treated with 1 g/L PET nanoplastics (3 and 7 days) revealed significant differential expression of genes linked to trehalose accumulation, hormone signaling, and metabolic pathways. Notably, genes associated with trehalose biosynthesis (/) and degradation () were dynamically regulated, suggesting trehalose homeostasis as a critical stress-response mechanism. Exogenous trehalose application effectively alleviated ROS damage under nanoplastic treatment, corroborating its protective role. Further WGCNA analysis indicated the potential involvement of ABA signal transduction and the MAPK signaling pathway in foxtail millet's response to PET nanoplastic stress. Additionally, our findings build on earlier observations that elevated leaf potassium content mitigates ROS but further highlight trehalose-mediated signaling as a complementary adaptive strategy. These results demonstrate that trehalose metabolism, ABA signal transduction, MAPK signaling pathway, and alongside ion homeostasis are integral to foxtail millet's resilience to PET nanoplastics, offering novel insights into plant stress adaptation and potential strategies for enhancing crop tolerance in contaminated environments.

摘要

谷子()是一种耐旱的C4模式植物,在农业生态系统中面临着来自聚对苯二甲酸乙二酯(PET)纳米塑料日益增加的威胁。虽然先前的研究表明PET纳米塑料会诱导活性氧(ROS)积累并损害作物生产力,但植物响应背后的生理机制仍不清楚。本研究调查了海藻糖代谢在减轻谷子PET纳米塑料胁迫中的作用。对用1 g/L PET纳米塑料处理(3天和7天)的幼苗进行转录组测序,发现与海藻糖积累、激素信号传导和代谢途径相关的基因有显著差异表达。值得注意的是,与海藻糖生物合成(/)和降解()相关的基因受到动态调节,表明海藻糖稳态是一种关键的应激反应机制。外源施用海藻糖有效减轻了纳米塑料处理下的ROS损伤,证实了其保护作用。进一步的WGCNA分析表明,ABA信号转导和MAPK信号通路可能参与了谷子对PET纳米塑料胁迫的响应。此外,我们的研究结果基于早期的观察结果,即叶片钾含量升高可减轻ROS,但进一步强调了海藻糖介导的信号传导作为一种互补的适应策略。这些结果表明,海藻糖代谢、ABA信号转导、MAPK信号通路以及离子稳态对于谷子对PET纳米塑料的抗性至关重要,为植物应激适应以及增强受污染环境中作物耐受性的潜在策略提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc3/12280233/504082e231f7/FSN3-13-e70593-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验