Cammarere Celine, Cortés Jaeden, Glover T Grant, Snurr Randall Q, Hupp Joseph T, Liu Jian
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, United States.
School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States.
Front Chem. 2025 Jul 8;13:1634637. doi: 10.3389/fchem.2025.1634637. eCollection 2025.
CO capture from post-combustion flue gas originating from coal or natural gas power plants, or even from the ambient atmosphere, is a promising strategy to reduce the atmospheric CO concentration and achieve global decarbonization goals. However, the co-existence of water vapor in these sources presents a significant challenge, as water often competes with CO for adsorption sites, thereby diminishing the performance of adsorbent materials. Selectively capturing CO in the presence of moisture is a key goal, as there is a growing demand for materials capable of selectively adsorbing CO under humid conditions. Among these, metal-organic frameworks (MOFs), a class of porous, highly tunable materials, have attracted extensive interest for gas capture, storage, and separation applications. The numerous combinations of secondary building units and organic linkers offer abundant opportunities for designing systems with enhanced CO selectivity. Interestingly, some recent studies have demonstrated that interactions between water and CO within the confined pore space of MOFs can enhance CO uptake, flipping the traditionally detrimental role of moisture into a beneficial one. These findings introduce a new paradigm: water-enhanced CO capture in MOFs. In this review, we summarize these recent discoveries, highlighting examples of MOFs that exhibit enhanced CO adsorption under humid conditions compared to dry conditions. We discuss the underlying mechanisms, design strategies, and structural features that enable this behavior. Finally, we offer a brief perspective on future directions for MOF development in the context of water-enhanced CO capture.
从煤或天然气发电厂的燃烧后烟道气甚至从周围大气中捕获二氧化碳,是降低大气中二氧化碳浓度并实现全球脱碳目标的一种有前景的策略。然而,这些来源中水蒸气的共存带来了重大挑战,因为水常常与二氧化碳竞争吸附位点,从而降低吸附剂材料的性能。在存在水分的情况下选择性捕获二氧化碳是一个关键目标,因为对能够在潮湿条件下选择性吸附二氧化碳的材料的需求日益增长。其中,金属有机框架(MOF)作为一类多孔、高度可调节的材料,在气体捕获、储存和分离应用中引起了广泛关注。二级构筑单元和有机连接体的众多组合为设计具有增强二氧化碳选择性的系统提供了丰富的机会。有趣的是,最近的一些研究表明,在MOF的受限孔隙空间内,水与二氧化碳之间的相互作用可以增强二氧化碳的吸收,将水分传统上的有害作用转变为有益作用。这些发现引入了一个新的范例:MOF中水分增强的二氧化碳捕获。在本综述中,我们总结了这些最新发现,重点介绍了与干燥条件相比在潮湿条件下表现出增强的二氧化碳吸附的MOF实例。我们讨论了促成这种行为的潜在机制、设计策略和结构特征。最后,我们简要展望了在水分增强的二氧化碳捕获背景下MOF未来的发展方向。