文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习的结直肠癌预后和化疗获益病理组学特征的开发与验证:一项回顾性多中心队列研究

Development and validation of a deep learning-based pathomics signature for prognosis and chemotherapy benefits in colorectal cancer: a retrospective multicenter cohort study.

作者信息

Lou Shenghan, Huang Yanming, Du Fenqi, Xue Jingmin, Mo Genshen, Li Hao, Yu Zhanjiang, Li Yuanchun, Wang Hang, Huang Yuze, Xie Haonan, Song Wenjie, Zhang Xinyue, Li Huiying, Lou Chun, Han Peng

机构信息

Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.

Department of General Surgery, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China.

出版信息

Front Immunol. 2025 Jul 8;16:1602909. doi: 10.3389/fimmu.2025.1602909. eCollection 2025.


DOI:10.3389/fimmu.2025.1602909
PMID:40698083
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12280904/
Abstract

INTRODUCTION: The conventional tumor-node-metastasis (TNM) classification system remains limited in accurately forecasting prognosis and guiding adjuvant chemotherapy decisions for patients with colorectal cancer (CRC). To address this gap, we introduced and validated a novel pathomics signature (PS) derived from hematoxylin and eosin-stained whole slide images, leveraging a deep learning framework. METHODS: This retrospective study analyzed 883 slides from two independent cohorts. An interpretable multi-instance learning model was developed to construct PS, with SHapley Additive exPlanations (SHAP) and gradient-weighted class activation mapping (Grad-CAM) for the improvement of model interpretability and the identification of critical histopathological features, respectively. The transcriptomic data was provided by The Cancer Genome Atlas (TCGA) and integrated to investigate the biological mechanisms underpinning PS. RESULTS: The results demonstrated that PS was proven to be an independent prognostic indicator for both overall and disease-free survival. It significantly enhanced the prognostic performance alongside TNM staging, as shown by improvements in net reclassification and integrated discrimination indices. Furthermore, patients in stages II and III with low PS levels were more likely to benefit from chemotherapy. Morphologically, PS reflected features such as tumor infiltration, adipocyte presence, fibrotic stroma, and immune cell engagement. Transcriptome analysis further revealed links between PS and pathways involved in tumor progression and immune evasion. DISCUSSION: Our findings suggested that the application of deep learning to histopathological images could be an efficient method to improve the prognostic accuracy and evaluate the treatment responses in CRC. The PS offers a promising aid for clinical decision-making by shedding light on key pathogenic processes. Nevertheless, further validation through prospective studies remains essential.

摘要

引言:传统的肿瘤-淋巴结-转移(TNM)分类系统在准确预测结直肠癌(CRC)患者的预后和指导辅助化疗决策方面仍然存在局限性。为了弥补这一差距,我们引入并验证了一种基于苏木精和伊红染色的全切片图像,利用深度学习框架得出的新型病理组学特征(PS)。 方法:这项回顾性研究分析了来自两个独立队列的883张切片。开发了一种可解释的多实例学习模型来构建PS,分别使用SHapley加性解释(SHAP)和梯度加权类激活映射(Grad-CAM)来提高模型的可解释性和识别关键组织病理学特征。转录组数据由癌症基因组图谱(TCGA)提供,并进行整合以研究PS背后的生物学机制。 结果:结果表明,PS被证明是总生存期和无病生存期的独立预后指标。正如净重新分类和综合判别指数的改善所示,它与TNM分期一起显著提高了预后性能。此外,II期和III期且PS水平低的患者更有可能从化疗中获益。在形态学上,PS反映了肿瘤浸润、脂肪细胞存在、纤维化基质和免疫细胞参与等特征。转录组分析进一步揭示了PS与肿瘤进展和免疫逃逸相关途径之间的联系。 讨论:我们的研究结果表明,将深度学习应用于组织病理学图像可能是提高CRC预后准确性和评估治疗反应的有效方法。PS通过揭示关键致病过程为临床决策提供了有前景的帮助。然而,通过前瞻性研究进行进一步验证仍然至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cbd/12280904/27038946032d/fimmu-16-1602909-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cbd/12280904/b69a4c58fe08/fimmu-16-1602909-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cbd/12280904/576386929b28/fimmu-16-1602909-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cbd/12280904/519879fc98a0/fimmu-16-1602909-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cbd/12280904/8ad40f80940a/fimmu-16-1602909-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cbd/12280904/f5aa91cff6de/fimmu-16-1602909-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cbd/12280904/27038946032d/fimmu-16-1602909-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cbd/12280904/b69a4c58fe08/fimmu-16-1602909-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cbd/12280904/576386929b28/fimmu-16-1602909-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cbd/12280904/519879fc98a0/fimmu-16-1602909-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cbd/12280904/8ad40f80940a/fimmu-16-1602909-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cbd/12280904/f5aa91cff6de/fimmu-16-1602909-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cbd/12280904/27038946032d/fimmu-16-1602909-g006.jpg

相似文献

[1]
Development and validation of a deep learning-based pathomics signature for prognosis and chemotherapy benefits in colorectal cancer: a retrospective multicenter cohort study.

Front Immunol. 2025-7-8

[2]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[3]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[4]
A retrospective analysis using deep-learning models for prediction of survival outcome and benefit of adjuvant chemotherapy in stage II/III colorectal cancer.

J Cancer Res Clin Oncol. 2022-8

[5]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[6]
Does the Presence of Missing Data Affect the Performance of the SORG Machine-learning Algorithm for Patients With Spinal Metastasis? Development of an Internet Application Algorithm.

Clin Orthop Relat Res. 2024-1-1

[7]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

[8]
A systematic overview of chemotherapy effects in colorectal cancer.

Acta Oncol. 2001

[9]
Impact of residual disease as a prognostic factor for survival in women with advanced epithelial ovarian cancer after primary surgery.

Cochrane Database Syst Rev. 2022-9-26

[10]
Construction and validation of a lipid metabolism-related genes prognostic signature for skin cutaneous melanoma.

Biochem Biophys Res Commun. 2025-5-29

本文引用的文献

[1]
Pathomics Signature for Prognosis and Chemotherapy Benefits in Stage III Colon Cancer.

JAMA Surg. 2024-5-1

[2]
From slides to insights: Harnessing deep learning for prognostic survival prediction in human colorectal cancer histology.

Open Life Sci. 2023-12-13

[3]
End-to-end prognostication in colorectal cancer by deep learning: a retrospective, multicentre study.

Lancet Digit Health. 2024-1

[4]
Personalizing adjuvant therapy for patients with colorectal cancer.

Nat Rev Clin Oncol. 2024-1

[5]
One label is all you need: Interpretable AI-enhanced histopathology for oncology.

Semin Cancer Biol. 2023-12

[6]
Colorectal cancer risk stratification on histological slides based on survival curves predicted by deep learning.

NPJ Precis Oncol. 2023-9-26

[7]
Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients.

Nat Commun. 2023-4-13

[8]
Deep learning-based morphological feature analysis and the prognostic association study in colon adenocarcinoma histopathological images.

Front Oncol. 2023-2-8

[9]
Prognostic and predictive value of a pathomics signature in gastric cancer.

Nat Commun. 2022-11-12

[10]
Grad-CAM Guided U-Net for MRI-based Pseudo-CT Synthesis.

Annu Int Conf IEEE Eng Med Biol Soc. 2022-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索