Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan ROC.
Nat Commun. 2023 Apr 13;14(1):2102. doi: 10.1038/s41467-023-37179-4.
Histopathologic assessment is indispensable for diagnosing colorectal cancer (CRC). However, manual evaluation of the diseased tissues under the microscope cannot reliably inform patient prognosis or genomic variations crucial for treatment selections. To address these challenges, we develop the Multi-omics Multi-cohort Assessment (MOMA) platform, an explainable machine learning approach, to systematically identify and interpret the relationship between patients' histologic patterns, multi-omics, and clinical profiles in three large patient cohorts (n = 1888). MOMA successfully predicts the overall survival, disease-free survival (log-rank test P-value<0.05), and copy number alterations of CRC patients. In addition, our approaches identify interpretable pathology patterns predictive of gene expression profiles, microsatellite instability status, and clinically actionable genetic alterations. We show that MOMA models are generalizable to multiple patient populations with different demographic compositions and pathology images collected from distinctive digitization methods. Our machine learning approaches provide clinically actionable predictions that could inform treatments for colorectal cancer patients.
组织病理学评估对于诊断结直肠癌(CRC)是不可或缺的。然而,在显微镜下对病变组织进行手动评估不能可靠地告知患者的预后或对治疗选择至关重要的基因组变异。为了解决这些挑战,我们开发了多组学多队列评估(MOMA)平台,这是一种可解释的机器学习方法,可系统地识别和解释三个大型患者队列(n=1888)中患者的组织学模式、多组学和临床特征之间的关系。MOMA 成功预测了 CRC 患者的总生存率、无病生存率(对数秩检验 P 值<0.05)和拷贝数改变。此外,我们的方法还确定了可解释的病理学模式,这些模式可预测基因表达谱、微卫星不稳定性状态和具有临床意义的遗传改变。我们表明,MOMA 模型可以推广到具有不同人口统计学组成的多个患者群体,以及从不同数字化方法收集的不同病理学图像。我们的机器学习方法提供了可操作的临床预测,可为结直肠癌患者的治疗提供信息。