Tavolara Thomas E, Su Ziyu, Gurcan Metin N, Niazi M Khalid Khan
Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
Semin Cancer Biol. 2023 Dec;97:70-85. doi: 10.1016/j.semcancer.2023.09.006. Epub 2023 Oct 11.
Artificial Intelligence (AI)-enhanced histopathology presents unprecedented opportunities to benefit oncology through interpretable methods that require only one overall label per hematoxylin and eosin (H&E) slide with no tissue-level annotations. We present a structured review of these methods organized by their degree of verifiability and by commonly recurring application areas in oncological characterization. First, we discuss morphological markers (tumor presence/absence, metastases, subtypes, grades) in which AI-identified regions of interest (ROIs) within whole slide images (WSIs) verifiably overlap with pathologist-identified ROIs. Second, we discuss molecular markers (gene expression, molecular subtyping) that are not verified via H&E but rather based on overlap with positive regions on adjacent tissue. Third, we discuss genetic markers (mutations, mutational burden, microsatellite instability, chromosomal instability) that current technologies cannot verify if AI methods spatially resolve specific genetic alterations. Fourth, we discuss the direct prediction of survival to which AI-identified histopathological features quantitatively correlate but are nonetheless not mechanistically verifiable. Finally, we discuss in detail several opportunities and challenges for these one-label-per-slide methods within oncology. Opportunities include reducing the cost of research and clinical care, reducing the workload of clinicians, personalized medicine, and unlocking the full potential of histopathology through new imaging-based biomarkers. Current challenges include explainability and interpretability, validation via adjacent tissue sections, reproducibility, data availability, computational needs, data requirements, domain adaptability, external validation, dataset imbalances, and finally commercialization and clinical potential. Ultimately, the relative ease and minimum upfront cost with which relevant data can be collected in addition to the plethora of available AI methods for outcome-driven analysis will surmount these current limitations and achieve the innumerable opportunities associated with AI-driven histopathology for the benefit of oncology.
人工智能(AI)增强的组织病理学提供了前所未有的机会,通过可解释的方法使肿瘤学受益,这些方法每张苏木精和伊红(H&E)切片仅需要一个总体标签,无需组织层面的注释。我们对这些方法进行了结构化综述,根据其可验证程度和肿瘤特征中常见的应用领域进行组织。首先,我们讨论形态学标志物(肿瘤的存在/不存在、转移、亚型、分级),其中全切片图像(WSIs)中人工智能识别的感兴趣区域(ROIs)可验证地与病理学家识别的ROIs重叠。其次,我们讨论分子标志物(基因表达、分子亚型),这些标志物不是通过H&E验证,而是基于与相邻组织上阳性区域的重叠。第三,我们讨论遗传标志物(突变、突变负担、微卫星不稳定性、染色体不稳定性),目前的技术无法验证人工智能方法是否在空间上解析特定的基因改变。第四,我们讨论生存的直接预测,人工智能识别的组织病理学特征与之定量相关,但仍无法进行机制验证。最后,我们详细讨论了这些每张切片一个标签的方法在肿瘤学中的几个机遇和挑战。机遇包括降低研究和临床护理成本、减轻临床医生工作量、个性化医疗以及通过新的基于成像的生物标志物释放组织病理学的全部潜力。当前的挑战包括可解释性、通过相邻组织切片进行验证、可重复性、数据可用性、计算需求、数据要求、领域适应性、外部验证、数据集不平衡,以及最终的商业化和临床潜力。最终,除了大量用于结果驱动分析的可用人工智能方法外,收集相关数据的相对简便性和最低前期成本将克服这些当前的限制,并实现与人工智能驱动的组织病理学相关的无数机遇,以造福肿瘤学。
Semin Cancer Biol. 2023-12
Database (Oxford). 2022-10-17
Brief Bioinform. 2022-11-19
Br J Cancer. 2023-1
Blood Cancer Discov. 2025-7-1
Cancers (Basel). 2024-9-6
J Imaging Inform Med. 2025-2
IEEE J Biomed Health Inform. 2024-12
Proc SPIE Int Soc Opt Eng. 2024-2
Proc SPIE Int Soc Opt Eng. 2024-2