文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一个标签就够了:用于肿瘤学的可解释人工智能增强组织病理学。

One label is all you need: Interpretable AI-enhanced histopathology for oncology.

作者信息

Tavolara Thomas E, Su Ziyu, Gurcan Metin N, Niazi M Khalid Khan

机构信息

Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA.

Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA.

出版信息

Semin Cancer Biol. 2023 Dec;97:70-85. doi: 10.1016/j.semcancer.2023.09.006. Epub 2023 Oct 11.


DOI:10.1016/j.semcancer.2023.09.006
PMID:37832751
Abstract

Artificial Intelligence (AI)-enhanced histopathology presents unprecedented opportunities to benefit oncology through interpretable methods that require only one overall label per hematoxylin and eosin (H&E) slide with no tissue-level annotations. We present a structured review of these methods organized by their degree of verifiability and by commonly recurring application areas in oncological characterization. First, we discuss morphological markers (tumor presence/absence, metastases, subtypes, grades) in which AI-identified regions of interest (ROIs) within whole slide images (WSIs) verifiably overlap with pathologist-identified ROIs. Second, we discuss molecular markers (gene expression, molecular subtyping) that are not verified via H&E but rather based on overlap with positive regions on adjacent tissue. Third, we discuss genetic markers (mutations, mutational burden, microsatellite instability, chromosomal instability) that current technologies cannot verify if AI methods spatially resolve specific genetic alterations. Fourth, we discuss the direct prediction of survival to which AI-identified histopathological features quantitatively correlate but are nonetheless not mechanistically verifiable. Finally, we discuss in detail several opportunities and challenges for these one-label-per-slide methods within oncology. Opportunities include reducing the cost of research and clinical care, reducing the workload of clinicians, personalized medicine, and unlocking the full potential of histopathology through new imaging-based biomarkers. Current challenges include explainability and interpretability, validation via adjacent tissue sections, reproducibility, data availability, computational needs, data requirements, domain adaptability, external validation, dataset imbalances, and finally commercialization and clinical potential. Ultimately, the relative ease and minimum upfront cost with which relevant data can be collected in addition to the plethora of available AI methods for outcome-driven analysis will surmount these current limitations and achieve the innumerable opportunities associated with AI-driven histopathology for the benefit of oncology.

摘要

人工智能(AI)增强的组织病理学提供了前所未有的机会,通过可解释的方法使肿瘤学受益,这些方法每张苏木精和伊红(H&E)切片仅需要一个总体标签,无需组织层面的注释。我们对这些方法进行了结构化综述,根据其可验证程度和肿瘤特征中常见的应用领域进行组织。首先,我们讨论形态学标志物(肿瘤的存在/不存在、转移、亚型、分级),其中全切片图像(WSIs)中人工智能识别的感兴趣区域(ROIs)可验证地与病理学家识别的ROIs重叠。其次,我们讨论分子标志物(基因表达、分子亚型),这些标志物不是通过H&E验证,而是基于与相邻组织上阳性区域的重叠。第三,我们讨论遗传标志物(突变、突变负担、微卫星不稳定性、染色体不稳定性),目前的技术无法验证人工智能方法是否在空间上解析特定的基因改变。第四,我们讨论生存的直接预测,人工智能识别的组织病理学特征与之定量相关,但仍无法进行机制验证。最后,我们详细讨论了这些每张切片一个标签的方法在肿瘤学中的几个机遇和挑战。机遇包括降低研究和临床护理成本、减轻临床医生工作量、个性化医疗以及通过新的基于成像的生物标志物释放组织病理学的全部潜力。当前的挑战包括可解释性、通过相邻组织切片进行验证、可重复性、数据可用性、计算需求、数据要求、领域适应性、外部验证、数据集不平衡,以及最终的商业化和临床潜力。最终,除了大量用于结果驱动分析的可用人工智能方法外,收集相关数据的相对简便性和最低前期成本将克服这些当前的限制,并实现与人工智能驱动的组织病理学相关的无数机遇,以造福肿瘤学。

相似文献

[1]
One label is all you need: Interpretable AI-enhanced histopathology for oncology.

Semin Cancer Biol. 2023-12

[2]
BRACS: A Dataset for BReAst Carcinoma Subtyping in H&E Histology Images.

Database (Oxford). 2022-10-17

[3]
Utility of artificial intelligence with deep learning of hematoxylin and eosin-stained whole slide images to predict lymph node metastasis in T1 colorectal cancer using endoscopically resected specimens; prediction of lymph node metastasis in T1 colorectal cancer.

J Gastroenterol. 2022-9

[4]
Predicting gene mutation status via artificial intelligence technologies based on multimodal integration (MMI) to advance precision oncology.

Semin Cancer Biol. 2023-6

[5]
Automated annotations of epithelial cells and stroma in hematoxylin-eosin-stained whole-slide images using cytokeratin re-staining.

J Pathol Clin Res. 2022-3

[6]
Multi-modality artificial intelligence in digital pathology.

Brief Bioinform. 2022-11-19

[7]
Role of AI and digital pathology for colorectal immuno-oncology.

Br J Cancer. 2023-1

[8]
Use of Deep Learning to Develop and Analyze Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis.

JAMA Netw Open. 2020-5-1

[9]
Interpretable tumor differentiation grade and microsatellite instability recognition in gastric cancer using deep learning.

Lab Invest. 2022-6

[10]
Automated diagnosis of 7 canine skin tumors using machine learning on H&E-stained whole slide images.

Vet Pathol. 2023-11

引用本文的文献

[1]
Development and validation of a deep learning-based pathomics signature for prognosis and chemotherapy benefits in colorectal cancer: a retrospective multicenter cohort study.

Front Immunol. 2025-7-8

[2]
Single-cell Resolved Oncogene Co-expression: From Principles to Clinical Impact.

Blood Cancer Discov. 2025-7-1

[3]
Emerging artificial intelligence-driven precision therapies in tumor drug resistance: recent advances, opportunities, and challenges.

Mol Cancer. 2025-4-23

[4]
Weakly supervised pathological differentiation of primary central nervous system lymphoma and glioblastoma on multi-site whole slide images.

J Med Imaging (Bellingham). 2025-1

[5]
Deep Learning Model for Predicting Lung Adenocarcinoma Recurrence from Whole Slide Images.

Cancers (Basel). 2024-9-6

[6]
Identification of genomic alteration and prognosis using pathomics-based artificial intelligence in oral leukoplakia and head and neck squamous cell carcinoma: a multicenter experimental study.

Int J Surg. 2025-1-1

[7]
Robust ROI Detection in Whole Slide Images Guided by Pathologists' Viewing Patterns.

J Imaging Inform Med. 2025-2

[8]
Cross-Attention-Based Saliency Inference for Predicting Cancer Metastasis on Whole Slide Images.

IEEE J Biomed Health Inform. 2024-12

[9]
Adapting SAM to Histopathology Images for Tumor Bud Segmentation in Colorectal Cancer.

Proc SPIE Int Soc Opt Eng. 2024-2

[10]
Few-shot Tumor Bud Segmentation Using Generative Model in Colorectal Carcinoma.

Proc SPIE Int Soc Opt Eng. 2024-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索