Liu Jingying, Xing Kaijian, Li Lintao, Zhao Weiyao, Stacey Alastair, Robertson Islay, Broadway David A, Tetienne Jean-Philippe, Qi Dong-Chen, Fuhrer Michael S, Hao Yufeng, Ou Qingdong
Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Zhuhai 519031, China.
Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao 999078, China.
ACS Nano. 2025 Aug 5;19(30):27919-27929. doi: 10.1021/acsnano.5c09815. Epub 2025 Jul 23.
Two-dimensional (2D) semiconductors are highly promising candidates for thin-film transistor applications due to their scalability, transferability, atomic thickness, and relatively high carrier mobility. However, a substantial performance gap remains between individual devices based on single-crystalline 2D films and wafer-scale integrated circuits, primarily due to defects introduced during conventional fabrication processes. Here, we report a diamond-assisted electrode transfer technique for the van der Waals integration of wafer-scale prefabricated electrode arrays onto 2D materials, enabling scalable electronics and optoelectronics. Implemented on metal-organic chemical vapor deposition-grown monolayer molybdenum disulfide, this method forms ultraclean metal-semiconductor interfaces, yielding field-effect transistors with excellent ohmic contacts, a low contact resistance of 400 Ω·μm, and a Schottky barrier height of only 9 meV. Furthermore, we demonstrate a scalable transistor array on monolayer molybdenum disulfide with excellent device performance uniformity, achieving an average field-effect mobility of 30 cm V s and an on/off current ratio exceeding 10. Additionally, high photocurrent and responsivity were demonstrated in the array devices, showing their potential for excellent image detection. We further demonstrate the versatility of this technique by fabricating a Schottky diode array through a single-step transfer of asymmetric electrodes─low work function aluminum and high work function gold─onto monolayer tungsten diselenide. This approach provides a clean, effective solution for contact engineering in 2D materials, offering a viable pathway toward wafer-scale, high-performance 2D electronics, optoelectronics, and integrated circuits.
二维(2D)半导体因其可扩展性、可转移性、原子厚度和相对较高的载流子迁移率,成为薄膜晶体管应用中极具潜力的候选材料。然而,基于单晶2D薄膜的单个器件与晶圆级集成电路之间仍存在较大的性能差距,这主要是由于传统制造工艺中引入的缺陷所致。在此,我们报道了一种金刚石辅助电极转移技术,用于将晶圆级预制电极阵列范德华集成到2D材料上,从而实现可扩展的电子学和光电子学。该方法应用于金属有机化学气相沉积生长的单层二硫化钼,形成了超清洁的金属-半导体界面,得到了具有优异欧姆接触、400Ω·μm的低接触电阻和仅9meV的肖特基势垒高度的场效应晶体管。此外,我们在单层二硫化钼上展示了一个具有优异器件性能均匀性的可扩展晶体管阵列,实现了30cm² V⁻¹ s⁻¹的平均场效应迁移率和超过10的开/关电流比。此外,阵列器件还展示了高光电流和响应度,显示出其在出色图像检测方面的潜力。我们通过将不对称电极(低功函数铝和高功函数金)单步转移到单层二硒化钨上制备肖特基二极管阵列,进一步证明了该技术的多功能性。这种方法为二维材料的接触工程提供了一种清洁、有效的解决方案,为实现晶圆级、高性能的二维电子学、光电子学和集成电路提供了一条可行的途径。