Matas-Bustos Jaime B, Mora-García Antonio M, de Hoyo Lora Moisés, Nieto-Alarcón Alejandro, Gonzalez-Fernández Francisco T
Department of Signal Theory, Telematics and Communications, University of Granada, Granada, Spain.
Department of Physical Education and Sports, University of Sevilla, Sevilla, Spain.
PLoS One. 2025 Jul 23;20(7):e0327960. doi: 10.1371/journal.pone.0327960. eCollection 2025.
Controlling training monotony and monitoring external workload using the Acute:Chronic Workload Ratio (ACWR) is a common practice among elite soccer teams to prevent non-contact injuries. However, recent research has questioned whether ACWR offers sufficient predictive power for injury prevention in elite competition settings. In this paper, we propose a novel feature engineering framework for training load management, inspired by bilinear modeling and signal processing principles. Our method represents external workload variables, derived from GPS data, as discrete time series, which are then integrated into a temporal matrix termed the Footballer Workload Footprint (FWF). We introduce calculus-based techniques-applying integral and differential operations-to derive two representations from the FWF matrix: a cumulative workload matrix ([Formula: see text]) generalizing Acute Workload (AW), and a temporal variation matrix ([Formula: see text]) generalizing Chronic Workload (CW) and formulating the ACWR. Our approach makes traditional workload metrics suitable for modern machine learning. Using real-world data from an elite soccer team competing in LaLiga (Spain's top division) and UEFA tournaments, we conducted exploratory and confirmatory analyses comparing multivariate models trained on FWF-derived features against those using traditional ACWR calculations. The FWF-based models consistently outperformed baseline methods across key performance metrics-including the Area Under the ROC Curve (ROC-AUC), Precision-Recall AUC (PR-AUC), Geometric Mean (G-Mean), and Accuracy-while reducing Type I and Type II errors. Tested on temporally independent holdout data, our top model performed robustly across all metrics with 95% confidence intervals. Permutation tests revealed a significant association between FWF matrices and injury risk, supporting the empirical validity of our approach. Additionally, we introduce an interpretability framework based on heatmap visualizations of the FWF's cumulative and temporal variations, enhancing explainability. These findings indicate that our approach offers a robust, interpretable, and generalizable framework for sports science and medical professionals involved in injury prevention and training load monitoring.
慢性工作量比率(ACWR)来控制训练单调性并监测外部工作量是精英足球队预防非接触性损伤的常见做法。然而,最近的研究质疑ACWR在精英比赛环境中预防损伤是否具有足够的预测能力。在本文中,我们受双线性建模和信号处理原理的启发,提出了一种用于训练负荷管理的新颖特征工程框架。我们的方法将从GPS数据中得出的外部工作量变量表示为离散时间序列,然后将其整合到一个称为足球运动员工作量足迹(FWF)的时间矩阵中。我们引入基于微积分的技术——应用积分和微分运算——从FWF矩阵中得出两种表示形式:一个累积工作量矩阵([公式:见正文]),它概括了急性工作量(AW),以及一个时间变化矩阵([公式:见正文]),它概括了慢性工作量(CW)并制定了ACWR。我们的方法使传统的工作量指标适用于现代机器学习。使用来自一支参加西甲联赛(西班牙顶级联赛)和欧洲足球协会联盟比赛的精英足球队的实际数据,我们进行了探索性和验证性分析,比较了基于FWF衍生特征训练的多变量模型与使用传统ACWR计算的模型。基于FWF的模型在关键性能指标上始终优于基线方法,包括ROC曲线下面积(ROC-AUC)、精确召回率AUC(PR-AUC)、几何均值(G-均值)和准确率,同时减少了I型和II型错误。在时间上独立的保留数据上进行测试时,我们的顶级模型在所有指标上都表现稳健,置信区间为95%。排列检验揭示了FWF矩阵与损伤风险之间存在显著关联,支持了我们方法的实证有效性。此外,我们引入了一个基于FWF累积和时间变化热图可视化的可解释性框架,增强了可解释性。这些发现表明,我们的方法为参与预防损伤和训练负荷监测的体育科学和医学专业人员提供了一个强大、可解释且可推广的框架。