Serra Gonzalez Maria, Kavkani Payam Habibzadeh, Deshpande Rucha Anil, Kadkhodazadeh Shima, Taboryski Rafael
DTU Nanolab, Technical University of Denmark, 2800 Kongens, Lyngby, Denmark.
Department of Physics, University of Modena and Reggio Emilia, 40125 Modena, Italy.
Nano Lett. 2025 Aug 6;25(31):11979-11985. doi: 10.1021/acs.nanolett.5c02749. Epub 2025 Jul 23.
We present a dual probe study of plasmonic metasurfaces using both electron energy-loss spectroscopy and optical spectroscopy. By fabricating plasmonic metasurfaces on ultrathin membranes, we enable both optical reflection and transmission spectroscopy, alongside electron transmission microscopy (TEM). This dual-probe technique provides a comprehensive insight into the energy absorption mechanisms and allows a precise spatial mapping of plasmonic hotspots at the metallic nanostructures. Finite element simulations were employed to optimize the metasurface geometry for obtaining high-intensity localized surface plasmon resonances (LSPRs) in the visible range, identify plasmonic hotspots, and elucidate experimentally observed resonance modes. By comparing the spectra obtained by the two methods with simulations, we identify the dominating dipole LSPR modes of Al nanodiscs placed on 200 nm tall SiO nanopillars in a hexagonal array with pitch 340 nm. The methodology here demonstrated, comprising optical transmission spectroscopy and TEM, can be readily extended to studies of other nanostructured samples.
我们展示了一项使用电子能量损失谱和光谱学对等离子体超表面进行的双探针研究。通过在超薄膜上制造等离子体超表面,我们实现了光学反射和透射光谱,以及电子透射显微镜(TEM)。这种双探针技术提供了对能量吸收机制的全面洞察,并允许在金属纳米结构处精确绘制等离子体热点的空间分布图。采用有限元模拟来优化超表面几何结构,以在可见光范围内获得高强度的局域表面等离子体共振(LSPR),识别等离子体热点,并阐明实验观察到的共振模式。通过将两种方法获得的光谱与模拟结果进行比较,我们确定了放置在间距为340 nm的六边形阵列中200 nm高的SiO纳米柱上的Al纳米盘的主导偶极LSPR模式。这里展示的方法,包括光学透射光谱和TEM,可以很容易地扩展到对其他纳米结构样品的研究。