Assael Yannis, Sommerschield Thea, Cooley Alison, Shillingford Brendan, Pavlopoulos John, Suresh Priyanka, Herms Bailey, Grayston Justin, Maynard Benjamin, Dietrich Nicholas, Wulgaert Robbe, Prag Jonathan, Mullen Alex, Mohamed Shakir
Google DeepMind, London, UK.
Department of Classics and Archaeology, University of Nottingham, Nottingham, UK.
Nature. 2025 Jul 23. doi: 10.1038/s41586-025-09292-5.
Human history is born in writing. Inscriptions are among the earliest written forms, and offer direct insights into the thought, language and history of ancient civilizations. Historians capture these insights by identifying parallels-inscriptions with shared phrasing, function or cultural setting-to enable the contextualization of texts within broader historical frameworks, and perform key tasks such as restoration and geographical or chronological attribution. However, current digital methods are restricted to literal matches and narrow historical scopes. Here we introduce Aeneas, a generative neural network for contextualizing ancient texts. Aeneas retrieves textual and contextual parallels, leverages visual inputs, handles arbitrary-length text restoration, and advances the state of the art in key tasks. To evaluate its impact, we conduct a large study with historians using outputs from Aeneas as research starting points. The historians find the parallels retrieved by Aeneas to be useful research starting points in 90% of cases, improving their confidence in key tasks by 44%. Restoration and geographical attribution tasks yielded superior results when historians were paired with Aeneas, outperforming both humans and artificial intelligence alone. For dating, Aeneas achieved a 13-year distance from ground-truth ranges. We demonstrate Aeneas' contribution to historical workflows through analysis of key traits in the renowned Roman inscription Res Gestae Divi Augusti, showing how integrating science and humanities can create transformative tools to assist historians and advance our understanding of the past.
人类历史始于书写。铭文是最早的书写形式之一,能让我们直接洞察古代文明的思想、语言和历史。历史学家通过识别相似之处——具有相同措辞、功能或文化背景的铭文——来获取这些见解,以便将文本置于更广泛的历史框架中进行背景化,并执行诸如修复以及地理或年代归属等关键任务。然而,当前的数字方法仅限于字面匹配且历史范围狭窄。在此,我们介绍埃涅阿斯(Aeneas),一种用于古代文本背景化的生成神经网络。埃涅阿斯能检索文本和上下文相似之处,利用视觉输入,处理任意长度的文本修复,并在关键任务上推动了技术发展。为评估其影响,我们与历史学家开展了一项大型研究,将埃涅阿斯的输出作为研究起点。历史学家发现,在90%的情况下,埃涅阿斯检索到的相似之处是有用的研究起点,将他们在关键任务上的信心提高了44%。当历史学家与埃涅阿斯合作时,修复和地理归属任务产生了更优结果,优于单独的人类和人工智能。在年代测定方面,埃涅阿斯与实际范围的差距为13年。我们通过分析著名的罗马铭文《神圣奥古斯都功业录》(Res Gestae Divi Augusti)中的关键特征,展示了埃涅阿斯对历史工作流程的贡献,说明了整合科学与人文如何能创造变革性工具来协助历史学家并增进我们对过去的理解。