Suppr超能文献

利用脑电图衍生数据预测危重症COVID-19患者的谵妄:一种机器学习方法。

Predicting delirium in critically Ill COVID-19 patients using EEG-derived data: a machine learning approach.

作者信息

Viegas Ana, Von Rekowski Cristiana P, Araújo Rúben, Ramalhete Luís, Cordeiro Inês Menezes, Manita Manuel, Viana-Baptista Miguel, Macedo Paula, Bento Luís

机构信息

NMS - NOVA Medical School, FCM - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria 130, 1169-056, Lisbon, Portugal.

CHRC - Comprehensive Health Research Centre, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria 130, 1150-082, Lisbon, Portugal.

出版信息

Geroscience. 2025 Jul 23. doi: 10.1007/s11357-025-01809-0.

Abstract

Delirium is a severe and common complication among critically ill patients, particularly those with SARS-CoV-2 infection, contributing to increased morbidity and mortality. Early identification of at-risk patients is crucial for timely intervention and improved outcomes. This prospective observational cohort study explores the potential of electroencephalography (EEG) combined with machine learning (ML) models for predicting delirium in critically ill patients with SARS-CoV-2 infection. A stepwise modeling approach was applied, starting with the independent analysis of specific EEG variables to assess their predictive value. Subsequently, three ML models were developed using data from 70 patients (31 with delirium, 39 without): two relied solely on EEG data, while the third integrated demographic, clinical, laboratory, and EEG data. An additional model analyzed EEG data before and after delirium diagnosis in 11 patients. Several EEG features were identified as predictors of delirium, with increased theta activity emerging as the most consistent. The best EEG-only model achieved an area under the curve (AUC) of 0.733 (sensitivity = 0.645, specificity = 0.692), indicating moderate predictive performance. Including demographic, clinical, and laboratory variables improved performance (AUC = 0.825, sensitivity = 0.613, specificity = 0.795). The model analyzing EEG features before and after delirium diagnosis achieved the highest accuracy (AUC = 0.950, sensitivity and specificity = 0.818), reinforcing the value of EEG-based monitoring. EEG-based ML models show promise for predicting delirium in critically ill patients, with increased theta activity identified as a key predictor. However, their moderate AUC, sensitivity, and specificity highlight the need for further refinement.

摘要

谵妄是重症患者中一种严重且常见的并发症,尤其是那些感染了新型冠状病毒的患者,会导致发病率和死亡率上升。早期识别高危患者对于及时干预和改善预后至关重要。这项前瞻性观察队列研究探讨了脑电图(EEG)结合机器学习(ML)模型预测新型冠状病毒感染重症患者谵妄的潜力。采用了逐步建模方法,首先对特定EEG变量进行独立分析以评估其预测价值。随后,使用70例患者(31例有谵妄,39例无谵妄)的数据开发了三种ML模型:两种仅依赖EEG数据,而第三种整合了人口统计学、临床、实验室和EEG数据。另一个模型分析了11例患者谵妄诊断前后的EEG数据。几种EEG特征被确定为谵妄的预测指标,其中θ活动增加最为一致。最佳单EEG模型的曲线下面积(AUC)为0.733(敏感性=0.645,特异性=0.692),表明预测性能中等。纳入人口统计学、临床和实验室变量可提高性能(AUC=0.825,敏感性=0.613,特异性=0.795)。分析谵妄诊断前后EEG特征的模型准确率最高(AUC=0.950,敏感性和特异性=0.818),强化了基于EEG监测的价值。基于EEG的ML模型在预测重症患者谵妄方面显示出前景,θ活动增加被确定为关键预测指标。然而,它们中等的AUC、敏感性和特异性突出了进一步优化的必要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验