Suppr超能文献

土壤微生物群落失调和根际代谢功能障碍导致了……的连作障碍 。 你提供的原文似乎不完整,“of”后面缺少具体内容。

Soil microbiome dysbiosis and rhizosphere metabolic dysfunction drive continuous cropping obstacles of .

作者信息

Xu Dabing, Peng Chenglin, Si Guohan, Xu Xiangyu, Zhao Shujun, You Chuan, Zhou Wuxian

机构信息

Institute of Plant Protection and Soil Fertilizers, Hubei Academy of Agricultural Sciences/National Observation and Experiment Station for Soil Quality, Hongshan, China.

Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China.

出版信息

Front Microbiol. 2025 Jul 9;16:1628234. doi: 10.3389/fmicb.2025.1628234. eCollection 2025.

Abstract

Successive monocropping of causes continuous cropping obstacles, impairing growth, yield, and quality. To investigate the soil environmental and microbial changes caused by these obstacles, we collected both continuous cropping (C-crop) and non-continuous cropping (NC-crop) soil for analysis. We employed high-throughput sequencing, Biolog-ECO microplate, and metabolomics technology to evaluate microbial diversity, community structure, and carbon source utilization efficiency. Compared with NC-crop, C-crop decreased the yield and polysaccharide content of by 40.47 and 29.4%, respectively. Continuous cropping significantly altered soil physicochemical properties and metabolomes, driving distinct shifts in microbial community structure and impairing carbon utilization efficiency. Microbial carbon use efficiency was positively correlated with key soil bacteria and fungi. However, their abundance decreased significantly under continuous cropping, ultimately disrupting soil carbon cycling. Moreover, key bacterial (e.g., , , , ) and fungal genera (e.g., , , ) showed strong correlations with critical soil physicochemical properties, microbial carbohydrate metabolism, and rhizosphere metabolite profiles. The reduced abundance of these microbes disrupted soil nutrient balance and microbial activity, potentially contributing to continuous cropping obstacles. This study contributes to the understanding of the mechanisms underlying continuous cropping obstacles in and lays the foundation for developing strategies to alleviate these obstacles.

摘要

连续单作导致连作障碍,影响生长、产量和品质。为了研究这些障碍引起的土壤环境和微生物变化,我们收集了连作(C-crop)和非连作(NC-crop)土壤进行分析。我们采用高通量测序、Biolog-ECO微孔板和代谢组学技术来评估微生物多样性、群落结构和碳源利用效率。与NC-crop相比,C-crop使[作物名称]的产量和多糖含量分别降低了40.47%和29.4%。连作显著改变了土壤理化性质和代谢组,导致微生物群落结构发生明显变化,并损害了碳利用效率。微生物碳利用效率与关键土壤细菌和真菌呈正相关。然而,在连作条件下它们的丰度显著降低,最终扰乱了土壤碳循环。此外,关键细菌属(如[细菌属名称1]、[细菌属名称2]、[细菌属名称3]、[细菌属名称4])和真菌属(如[真菌属名称1]、[真菌属名称2]、[真菌属名称3])与关键土壤理化性质、微生物碳水化合物代谢和根际代谢物谱显示出强烈的相关性。这些微生物丰度的降低扰乱了土壤养分平衡和微生物活性,可能导致[作物名称]连作障碍。本研究有助于理解[作物名称]连作障碍的潜在机制,并为制定缓解这些障碍的策略奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de67/12283688/327999713301/fmicb-16-1628234-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验