Suppr超能文献

诱导多能干细胞衍生的心肌细胞在生理性聚二甲基硅氧烷聚合物上的底物硬度依赖性代谢重编程

Substrate stiffness-dependent metabolic reprogramming of iPSC-derived cardiomyocytes on physiological PDMS polymers.

作者信息

Patel Leena, Marzullo Bryan P, Barlow Jonathan, Rana Himani, Azad Amar J, Thomas Patricia, Tennant Daniel A, Gehmlich Katja

机构信息

Department of Cardiovascular Sciences, School of Medical Sciences, University of Birmingham, Birmingham, UK.

Department of Metabolism and Systems Science, School of Medical Sciences, University of Birmingham, Birmingham, UK.

出版信息

Metab Eng Commun. 2025 Jul 8;21:e00266. doi: 10.1016/j.mec.2025.e00266. eCollection 2025 Dec.

Abstract

Many cardiac pathologies are characterised by increased stiffness of the myocardium, due to excess deposition of extracellular matrix (ECM) proteins and structural remodelling, impacting the behaviour of cardiomyocytes (CMs). Metabolism of CMs shifts in cardiac pathologies, with the healthy heart primarily utilising fatty acids as its source of energy production, whilst the diseased heart switches to utilise glucose. The shift in metabolic source with stiffness of the myocardium has not been investigated. To investigate the effect of ECM stiffnesses on iPSC-CM metabolism, iPSC-CMs were cultured on polydimethylsiloxane (PDMS) substrates of healthy and fibrotic stiffness (20 kPa and 130 kPa respectively) and plastic. Cellular metabolism of iPSC-CMs was assessed through isotope-labelled mass spectrometry with central carbon tracing as well as real-time cellular bioenergetics using extracellular flux analysis. Key metabolic genes were investigated at transcript and protein level, with proteomics analysis conducted to identify protein profiles on substrate stiffnesses. Mass spectrometry data revealed greater utilisation of glucose in iPSC-CMs cultured on plastic compared to softer PDMS substrates, indicating greater glycolytic activity. Extracellular flux analysis demonstrated greater lactic acid efflux from iPSC-CMs cultured on plastic substrates, reflective of increased glycolytic flux and a shift towards aerobic glycolysis as the primary source of ATP synthesis. This study revealed culture of iPSC-CMs on traditional cell culture plastics or glass coverslips displaying pathological metabolism, highlighting the use of physiological substrates for metabolic investigation.

摘要

许多心脏疾病的特征是心肌僵硬度增加,这是由于细胞外基质(ECM)蛋白过度沉积和结构重塑,影响了心肌细胞(CM)的行为。在心脏疾病中,CM的代谢会发生变化,健康心脏主要利用脂肪酸作为能量产生的来源,而患病心脏则转而利用葡萄糖。心肌僵硬度与代谢来源的转变尚未得到研究。为了研究ECM僵硬度对诱导多能干细胞来源的心肌细胞(iPSC-CM)代谢的影响,将iPSC-CM培养在具有健康和纤维化僵硬度(分别为20 kPa和130 kPa)的聚二甲基硅氧烷(PDMS)底物以及塑料上。通过同位素标记质谱法进行中心碳追踪以及使用细胞外通量分析进行实时细胞生物能量学评估iPSC-CM的细胞代谢。在转录和蛋白质水平研究关键代谢基因,并进行蛋白质组学分析以鉴定底物僵硬度上的蛋白质谱。质谱数据显示,与较软的PDMS底物相比,在塑料上培养的iPSC-CM中葡萄糖的利用率更高,表明糖酵解活性更高。细胞外通量分析表明,在塑料底物上培养的iPSC-CM中乳酸外流更多,这反映了糖酵解通量增加以及向有氧糖酵解转变为ATP合成的主要来源。这项研究揭示了在传统细胞培养塑料或玻璃盖玻片上培养的iPSC-CM表现出病理代谢,强调了使用生理底物进行代谢研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3860/12281380/c97148b58d8c/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验