Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States.
Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States.
Am J Physiol Heart Circ Physiol. 2024 Jan 1;326(1):H61-H73. doi: 10.1152/ajpheart.00483.2023. Epub 2023 Oct 27.
In vitro cultures of primary cardiac fibroblasts (CFs), the major extracellular matrix (ECM)-producing cells of the heart, are used to determine molecular mechanisms of cardiac fibrosis. However, the supraphysiologic stiffness of tissue culture polystyrene (TCPS) triggers the conversion of CFs into an activated myofibroblast-like state, and serial passage of the cells results in the induction of replicative senescence. These phenotypic switches confound the interpretation of experimental data obtained with cultured CFs. In an attempt to circumvent TCPS-induced activation and senescence of CFs, we used poly(ethylene glycol) (PEG) hydrogels as cell culture platforms with low and high stiffness formulations to mimic healthy and fibrotic hearts, respectively. Low hydrogel stiffness converted activated CFs into a quiescent state with a reduced abundance of α-smooth muscle actin (α-SMA)-containing stress fibers. Unexpectedly, lower substrate stiffness concomitantly augmented CF senescence, marked by elevated senescence-associated β-galactosidase (SA-β-Gal) activity and increased expression of p16 and p21, which are antiproliferative markers of senescence. Using dynamically stiffening hydrogels with phototunable cross-linking capabilities, we demonstrate that premature, substrate-induced CF senescence is partially reversible. RNA-sequencing analysis revealed widespread transcriptional reprogramming of CFs cultured on low-stiffness hydrogels, with a reduction in the expression of profibrotic genes encoding ECM proteins, and an attendant increase in expression of NF-κB-responsive inflammatory genes that typify the senescence-associated secretory phenotype (SASP). Our findings demonstrate that alterations in matrix stiffness profoundly impact CF cell state transitions, and suggest mechanisms by which CFs change phenotype in vivo depending on the stiffness of the myocardial microenvironment in which they reside. Our findings highlight the advantages and pitfalls associated with culturing cardiac fibroblasts on hydrogels of varying stiffness. The findings also define stiffness-dependent signaling and transcriptional networks in cardiac fibroblasts.
原代心肌成纤维细胞(CFs)的体外培养是研究心脏细胞外基质(ECM)产生的主要方法。然而,组织培养聚苯乙烯(TCPS)的超高刚性会促使 CFs 转化为激活的肌成纤维细胞样状态,并且细胞的连续传代会导致复制性衰老的发生。这些表型转换会混淆通过培养 CFs 获得的实验数据的解释。为了避免 TCPS 诱导 CFs 的激活和衰老,我们使用聚乙二醇(PEG)水凝胶作为细胞培养平台,采用低和高硬度配方来分别模拟健康和纤维化的心脏。低水凝胶硬度会将激活的 CFs 转化为静止状态,减少含有α-平滑肌肌动蛋白(α-SMA)的应激纤维的丰度。出乎意料的是,较低的基质硬度同时增强了 CF 衰老,表现为衰老相关β-半乳糖苷酶(SA-β-Gal)活性的升高和 p16 和 p21 的表达增加,p16 和 p21 是衰老的抗增殖标志物。使用具有光可调交联能力的动态变硬水凝胶,我们证明了过早的、由基质诱导的 CF 衰老部分是可逆的。RNA 测序分析显示,在低硬度水凝胶上培养的 CFs 发生了广泛的转录重编程,编码 ECM 蛋白的促纤维化基因的表达减少,而 NF-κB 反应性炎症基因的表达增加,这是衰老相关分泌表型(SASP)的典型特征。我们的研究结果表明,基质硬度的改变会深刻影响 CF 细胞的状态转换,并提出了 CFs 根据其所在心肌微环境的硬度改变表型的机制。我们的研究结果突出了培养 CFs 时使用不同硬度水凝胶的优缺点。这些发现还定义了 CFs 中依赖于硬度的信号转导和转录网络。