Suppr超能文献

需要住院治疗的登革热病例的风险分层

Risk Stratification of Dengue Cases Requiring Hospitalization.

作者信息

Anh Do Duc, Recker Mario, The Nguyen Trong, Krishna Sanjeev, Kremsner Peter G, Song Le Huu, Velavan Thirumalaisamy P

机构信息

Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.

Vietnamese German Center for Medical Research (VG-CARE), Hanoi, Vietnam.

出版信息

J Med Virol. 2025 Aug;97(8):e70511. doi: 10.1002/jmv.70511.

Abstract

Dengue pathogenesis involves immune-driven inflammation that contributes to severe disease progression. This study assessed a machine learning model to identify a minimal, yet highly predictive biomarker set, aiming to support clinical decision-making and patient triage. A total of 48 inflammatory mediators were quantified from plasma samples collected at admission from confirmed dengue patients, classified as either dengue without warning signs (DF) or dengue with warning signs/severe dengue (DWS/SD). A random forest approach was applied to identify the most predictive biomarkers associated with disease severity requiring hospitalization, based on admission-time variables. Among the 48 immune mediators, 43 were differentially expressed in dengue patients versus healthy controls, and 26 showed significant differences between DF and DWS/SD cases. Lymphocyte counts negatively correlated with IL-1RA, while liver enzymes showed positive correlations with HGF and SCGF-beta; platelet counts also negatively correlated with these markers. Key severity-associated markers included HGF, TNF-beta, MIP-1-beta, and SCGF-beta. A model incorporating these markers and fever duration achieved nearly 80% accuracy in distinguishing DWS/SD from DF cases, independent of clinical examination. The findings suggest that targeted cytokine profiling may guide early hospitalization decisions and ease healthcare burdens in dengue-endemic regions.

摘要

登革热发病机制涉及免疫驱动的炎症,这会导致严重疾病进展。本研究评估了一种机器学习模型,以识别一组最小但具有高度预测性的生物标志物,旨在支持临床决策和患者分流。从确诊登革热患者入院时采集的血浆样本中对总共48种炎症介质进行了定量,这些患者被分类为无警示体征的登革热(DF)或有警示体征/重症登革热(DWS/SD)。基于入院时的变量,采用随机森林方法来识别与需要住院治疗的疾病严重程度相关的最具预测性的生物标志物。在这48种免疫介质中,43种在登革热患者与健康对照中差异表达,26种在DF和DWS/SD病例之间显示出显著差异。淋巴细胞计数与IL-1RA呈负相关,而肝酶与HGF和SCGF-β呈正相关;血小板计数也与这些标志物呈负相关。与严重程度相关的关键标志物包括HGF、TNF-β、MIP-1-β和SCGF-β。一个纳入这些标志物和发热持续时间的模型在区分DWS/SD和DF病例方面达到了近80%的准确率,与临床检查无关。研究结果表明,靶向细胞因子谱分析可能指导早期住院决策,并减轻登革热流行地区的医疗负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78e8/12288109/afaba8bee9ab/JMV-97-e70511-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验