Suppr超能文献

重症登革热预测模型的比较:逻辑回归、分类树和结构方程模型

Comparison of Predictive Models for Severe Dengue: Logistic Regression, Classification Tree, and the Structural Equation Model.

作者信息

Lee Hyelan, Srikiatkhachorn Anon, Kalayanarooj Siripen, Farmer Aaron R, Park Sangshin

机构信息

Graduate School of Urban Public Health, University of Seoul, Republic of Korea.

Department of Urban Big Data Convergence, University of Seoul, Republic of Korea.

出版信息

J Infect Dis. 2025 Feb 4;231(1):241-250. doi: 10.1093/infdis/jiae366.

Abstract

BACKGROUND

This study aimed to compare the predictive performance of 3 statistical models-logistic regression, classification tree, and structural equation model (SEM)-in predicting severe dengue illness.

METHODS

We adopted a modified classification of dengue illness severity based on the World Health Organization's 1997 guideline. We constructed predictive models using demographic factors and laboratory indicators on the day of fever occurrence, with data from 2 hospital cohorts in Thailand (257 Thai children). Different predictive models for each category of severe dengue illness were developed employing logistic regression, classification tree, and SEM. The model's discrimination abilties were analyzed with external validation data sets from 55 and 700 patients not used in model development.

RESULTS

From external validation based on predictors on the day of presentation to the hospital, the area under the receiver operating characteristic curve was from 0.65 to 0.84 for the regression models from 0.73 to 0.85 for SEMs. Classification tree models showed good results of sensitivity (0.95 to 0.99) but poor specificity (0.10 to 0.44).

CONCLUSIONS

Our study showed that SEM is comparable to logistic regression or classification tree, which was widely used for predicting severe forms of dengue.

摘要

背景

本研究旨在比较3种统计模型——逻辑回归、分类树和结构方程模型(SEM)——预测重症登革热疾病的性能。

方法

我们基于世界卫生组织1997年的指南采用了一种改良的登革热疾病严重程度分类方法。我们利用发热当天的人口统计学因素和实验室指标构建预测模型,数据来自泰国的2个医院队列(257名泰国儿童)。采用逻辑回归、分类树和SEM为每类重症登革热疾病建立不同的预测模型。利用未用于模型构建的55名和700名患者的外部验证数据集分析模型的辨别能力。

结果

根据患者入院当天预测指标的外部验证,回归模型的受试者操作特征曲线下面积为0.65至0.84,结构方程模型为0.73至0.85。分类树模型显示出良好的灵敏度结果(0.95至0.99),但特异度较差(0.10至0.44)。

结论

我们的研究表明,结构方程模型与广泛用于预测重症登革热的逻辑回归或分类树相当。

相似文献

引用本文的文献

本文引用的文献

1
The current and future global distribution and population at risk of dengue.当前和未来登革热的全球分布和风险人群。
Nat Microbiol. 2019 Sep;4(9):1508-1515. doi: 10.1038/s41564-019-0476-8. Epub 2019 Jun 10.
2
Use of structural equation models to predict dengue illness phenotype.应用结构方程模型预测登革热疾病表型。
PLoS Negl Trop Dis. 2018 Oct 1;12(10):e0006799. doi: 10.1371/journal.pntd.0006799. eCollection 2018 Oct.
5
Pathogenesis of vascular leak in dengue virus infection.登革病毒感染中血管渗漏的发病机制。
Immunology. 2017 Jul;151(3):261-269. doi: 10.1111/imm.12748. Epub 2017 May 24.
7
Current management of severe dengue infection.重症登革热感染的当前管理。
Expert Rev Anti Infect Ther. 2017 Jan;15(1):67-78. doi: 10.1080/14787210.2017.1248405. Epub 2016 Oct 27.
8
Dengue in a changing climate.气候变化中的登革热
Environ Res. 2016 Nov;151:115-123. doi: 10.1016/j.envres.2016.07.026. Epub 2016 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验