Suppr超能文献

利用双网络模型增强和加速大规模空间转录组学切片的细胞类型反卷积

Enhancing and accelerating cell type deconvolution of large-scale spatial transcriptomics slices with dual network model.

作者信息

Zha Yuhong, Feng Shaoqing, Gao Peng, Zou Quan, Ma Xiaoke

机构信息

School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.

Key Laboratory of Smart Human-Computer Interaction and Wearable Technology of Shaanxi Province, Xidian University, Xi'an, Shaanxi 710071, China.

出版信息

Bioinformatics. 2025 Aug 2;41(8). doi: 10.1093/bioinformatics/btaf419.

Abstract

MOTIVATION

Cell type deconvolution deciphers spatial distribution of mRNA transcripts at single cell level by integrating single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics data to infer mixture of cell types of spots in slices. Current algorithms are criticized for neglecting connection between scRNA-seq and spatial transcriptomics data, as well as time-consuming, hampering their application to large-scale datasets.

RESULTS

In this study, we propose a joint learning nonnegative matrix factorization algorithm for fast cell type deconvolution (aka jMF2D), which integrates scRNA-seq and spatial transcriptomics data with network models. To bridge scRNA-seq and spatial transcriptomics data, jMF2D jointly learns cell type similarity network to enhance quality of signatures of cell types, thereby promoting accuracy and efficiency of deconvolution. Experiments demonstrate that jMF2D outperforms state-of-the-art baselines in terms of accuracy by saving about 90% running time on various datasets generated by different platforms. Furthermore, it can also facilitates the identification of spatial domains and bio-marker genes, providing an efficient and effective model for analyzing spatial transcriptomics data.

AVAILABILITY AND IMPLEMENTATION

The software is coded using python, and is free available for academic https://github.com/xkmaxidian/jMF2D.

摘要

动机

细胞类型反卷积通过整合单细胞RNA测序(scRNA-seq)和空间转录组学数据来推断切片中斑点的细胞类型混合物,从而在单细胞水平上破译mRNA转录本的空间分布。当前的算法因忽略scRNA-seq和空间转录组学数据之间的联系以及耗时问题而受到批评,这阻碍了它们在大规模数据集上的应用。

结果

在本研究中,我们提出了一种用于快速细胞类型反卷积的联合学习非负矩阵分解算法(即jMF2D),该算法将scRNA-seq和空间转录组学数据与网络模型相结合。为了弥合scRNA-seq和空间转录组学数据之间的差距,jMF2D联合学习细胞类型相似性网络以提高细胞类型特征的质量,从而提高反卷积的准确性和效率。实验表明,jMF2D在准确性方面优于现有最先进的基线方法,在由不同平台生成的各种数据集上运行时间节省约90%。此外,它还可以促进空间域和生物标志物基因的识别,为分析空间转录组学数据提供了一个高效且有效的模型。

可用性和实现

该软件使用Python编码,可在https://github.com/xkmaxidian/jMF2D上免费获取以供学术使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec5/12341680/5558a0eb0e63/btaf419f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验