Suppr超能文献

SpaMask:用于空间转录组学的具有对比学习的双掩码图自动编码器。

SpaMask: Dual masking graph autoencoder with contrastive learning for spatial transcriptomics.

作者信息

Min Wenwen, Fang Donghai, Chen Jinyu, Zhang Shihua

机构信息

School of Information Science and Engineering, Yunnan University, Kunming, Yunnan, China.

School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing, China.

出版信息

PLoS Comput Biol. 2025 Apr 3;21(4):e1012881. doi: 10.1371/journal.pcbi.1012881. eCollection 2025 Apr.

Abstract

Understanding the spatial locations of cell within tissues is crucial for unraveling the organization of cellular diversity. Recent advancements in spatial resolved transcriptomics (SRT) have enabled the analysis of gene expression while preserving the spatial context within tissues. Spatial domain characterization is a critical first step in SRT data analysis, providing the foundation for subsequent analyses and insights into biological implications. Graph neural networks (GNNs) have emerged as a common tool for addressing this challenge due to the structural nature of SRT data. However, current graph-based deep learning approaches often overlook the instability caused by the high sparsity of SRT data. Masking mechanisms, as an effective self-supervised learning strategy, can enhance the robustness of these models. To this end, we propose SpaMask, dual masking graph autoencoder with contrastive learning for SRT analysis. Unlike previous GNNs, SpaMask masks a portion of spot nodes and spot-to-spot edges to enhance its performance and robustness. SpaMask combines Masked Graph Autoencoders (MGAE) and Masked Graph Contrastive Learning (MGCL) modules, with MGAE using node masking to leverage spatial neighbors for improved clustering accuracy, while MGCL applies edge masking to create a contrastive loss framework that tightens embeddings of adjacent nodes based on spatial proximity and feature similarity. We conducted a comprehensive evaluation of SpaMask on eight datasets from five different platforms. Compared to existing methods, SpaMask achieves superior clustering accuracy and effective batch correction.

摘要

了解细胞在组织中的空间位置对于揭示细胞多样性的组织方式至关重要。空间分辨转录组学(SRT)的最新进展使得在保留组织内空间背景的同时能够分析基因表达。空间域表征是SRT数据分析的关键第一步,为后续分析以及对生物学意义的洞察提供基础。由于SRT数据的结构性质,图神经网络(GNN)已成为应对这一挑战的常用工具。然而,当前基于图的深度学习方法常常忽略SRT数据的高稀疏性所导致的不稳定性。掩码机制作为一种有效的自监督学习策略,可以增强这些模型的鲁棒性。为此,我们提出了SpaMask,即用于SRT分析的具有对比学习的双掩码图自动编码器。与之前的GNN不同,SpaMask对一部分点节点和点到点边进行掩码以提高其性能和鲁棒性。SpaMask结合了掩码图自动编码器(MGAE)和掩码图对比学习(MGCL)模块,其中MGAE使用节点掩码来利用空间邻居以提高聚类准确性,而MGCL应用边掩码来创建一个对比损失框架,该框架基于空间接近度和特征相似性来收紧相邻节点的嵌入。我们在来自五个不同平台的八个数据集上对SpaMask进行了全面评估。与现有方法相比,SpaMask实现了更高的聚类准确性和有效的批次校正。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68e2/11968113/017db3bcba25/pcbi.1012881.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验