Suppr超能文献

应用孟德尔随机化和生物信息学分析构建甲状腺癌预后模型并进行泛癌分析。

Application of Mendelian randomization and bioinformatic analysis to construct a prognostic model for thyroid cancer and perform pan-cancer analysis.

作者信息

Zhan Zhenrun, Weng Zhiyan, Zheng Ke, Lin Jiebin, Yan Sunjie, Shen Ximei

机构信息

Department of Endocrinology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.

Department of Endocrinology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.

出版信息

Discov Oncol. 2025 Jul 24;16(1):1402. doi: 10.1007/s12672-025-03222-7.

Abstract

OBJECTIVE

This study aimed to identify causal effects and potential molecular mechanisms of genes associated with THCA development.

METHODS

Bioinformatic analyses were performed to identify differentially expressed genes (DEGs) associated with THCA. Subsequently, Mendelian randomization (MR) analysis was conducted using large-scale eQTL data and THCA GWAS summary statistics to screen for candidate genes. The intersection of DEGs and MR-derived candidate genes was used to determine DEGs with potential causal associations with thyroid carcinogenesis. Functional enrichment analysis, pathway analysis, and immune cell infiltration profiling were performed. External datasets were used for validation. Additionally, prognostic modeling and pan-cancer analyses of the candidate genes were conducted.

RESULTS

IVW-based MR analysis revealed that elevated expression levels of ALOX15B [OR = 1.647, 95% CI (1.120-2.420), P < 0.05], TIAM1 [OR = 1.270, 95% CI (1.001-1.611), P < 0.05], and TMC6 [OR = 1.250, 95% CI (1.021-1.530), P < 0.05] were associated with an increased risk of THCA. Conversely, elevated expression of JUN [OR = 0.795, 95% CI (0.653-0.967), P < 0.05], PAPSS2 [OR = 0.779, 95% CI (0.608-1.000), P < 0.05], and RAP1GAP [OR = 0.895, 95% CI (0.810-0.989), P < 0.05] was associated with a reduced risk. Gene set enrichment analysis (GSEA) indicated that risk genes were enriched in proliferation- and metastasis-related pathways, such as extracellular matrix (ECM)-receptor interaction and cell adhesion molecules (CAMs). Findings from the training set were further validated experimentally and via external datasets. Additionally, candidate risk genes demonstrated associations with the development and progression of multiple tumor types.

CONCLUSION

This study identified ALOX15B, TIAM1, and TMC6 as potential risk genes and JUN, PAPSS2, and RAP1GAP as protective genes in THCA. These genes may serve as promising biomarkers and therapeutic targets for THCA, offering novel insights into precision oncology.

摘要

目的

本研究旨在确定与甲状腺癌(THCA)发生相关基因的因果效应及潜在分子机制。

方法

进行生物信息学分析以鉴定与THCA相关的差异表达基因(DEG)。随后,利用大规模表达定量性状位点(eQTL)数据和THCA全基因组关联研究(GWAS)汇总统计进行孟德尔随机化(MR)分析,以筛选候选基因。将DEG与MR衍生的候选基因的交集用于确定与甲状腺癌发生具有潜在因果关联的DEG。进行功能富集分析、通路分析和免疫细胞浸润分析。使用外部数据集进行验证。此外,对候选基因进行预后建模和泛癌分析。

结果

基于逆方差加权(IVW)的MR分析显示,ALOX15B[比值比(OR)=1.647,95%置信区间(CI)(1.120 - 2.420),P<0.05]、TIAM1[OR = 1.270,95%CI(1.001 - 1.611),P<0.05]和TMC6[OR = 1.250,95%CI(1.021 - 1.530),P<0.05]表达水平升高与THCA风险增加相关。相反,JUN[OR = 0.795,95%CI(0.653 - 0.967),P<0.05]、PAPSS2[OR = 0.779,95%CI(0.608 - 1.000),P<0.05]和RAP1GAP[OR = 0.895,95%CI(0.810 - 0.989),P<0.05]表达升高与风险降低相关。基因集富集分析(GSEA)表明,风险基因在增殖和转移相关通路中富集,如细胞外基质(ECM)-受体相互作用和细胞黏附分子(CAM)。训练集的结果通过实验和外部数据集进一步验证。此外,候选风险基因与多种肿瘤类型的发生和进展相关。

结论

本研究确定ALOX15B、TIAM1和TMC6为THCA的潜在风险基因,JUN、PAPSS2和RAP1GAP为保护基因。这些基因可能成为THCA有前景的生物标志物和治疗靶点,为精准肿瘤学提供新见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c826/12290152/dc992ae73dbe/12672_2025_3222_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验