Jiang Jibo, Guan Jiaqian, Wang Shilong, Ding Wentao, Li Lei, Hu Kairan, Zhu Yu, Zhao Yun, Han Sheng
Faculty of Chemical Engineering and Energy Technology, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China.
Faculty of Chemical Engineering and Energy Technology, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China.
J Colloid Interface Sci. 2025 Dec 15;700(Pt 2):138503. doi: 10.1016/j.jcis.2025.138503. Epub 2025 Jul 21.
The design of porous nanosheets using vacancy engineering together with structural modulation engineering is an effective way to realize high energy density supercapacitors. However, the effects of vacancies on electronic structure, carrier density, and electrochemical activity have not yet been fully explored and elucidated. Herein, we used ZIF-L as a precursor to prepare triangular pyramid-shaped (Ni,Co)Se₂ nanosheets rich in selenium vacancies. This method involved the utilization of the ZIF-L transformation technique. Porous nanosheets have been demonstrated to facilitate electrolyte ion transport and ensure efficient redox processes even at higher currents. The BET analysis indicates that the presence of selenium vacancies leads to an increase in the specific surface area, thereby facilitating the exposure of active sites. Furthermore, density functional theory calculations, UV-vis spectroscopy, and Mott-Schottky plots demonstrate that selenium vacancies narrow the bandgap of (Ni,Co)Se₂ and enhance carrier density. Furthermore, the results of DOS suggest that the presence of vacancies contributes to improved material conductivity. As a result, V-(Ni,Co)Se possesses an extraordinarily high specific capacity of 1011C g at 1 A g together with a capacity decay of only 25.8 % even at 10 A g. In particular, a hybrid supercapacitor assembled using activated carbon and V-(Ni,Co)Se possess excellent energy density (68.13 Wh kg) at a power density of 750 W kg. This work opens a new way to obtain hybrid supercapacitor cell-based materials based on ZIF conversion.
利用空位工程与结构调制工程相结合的方法设计多孔纳米片是实现高能量密度超级电容器的有效途径。然而,空位对电子结构、载流子密度和电化学活性的影响尚未得到充分探索和阐明。在此,我们以ZIF-L为前驱体,制备了富含硒空位的三角锥形(Ni,Co)Se₂纳米片。该方法采用了ZIF-L转化技术。多孔纳米片已被证明有助于电解质离子传输,即使在较高电流下也能确保高效的氧化还原过程。BET分析表明,硒空位的存在导致比表面积增加,从而促进活性位点的暴露。此外,密度泛函理论计算、紫外可见光谱和莫特-肖特基图表明,硒空位使(Ni,Co)Se₂的带隙变窄并提高了载流子密度。此外,态密度结果表明空位的存在有助于提高材料的导电性。结果,V-(Ni,Co)Se在1 A g时具有1011C g的超高比容量,即使在10 A g时容量衰减也仅为25.8%。特别是,使用活性炭和V-(Ni,Co)Se组装的混合超级电容器在750 W kg的功率密度下具有优异的能量密度(68.13 Wh kg)。这项工作为基于ZIF转化获得混合超级电容器电池基材料开辟了一条新途径。