Li Xi-Yao, Feng Shuai, Zhao Meng, Zhao Chang-Xin, Chen Xiang, Li Bo-Quan, Huang Jia-Qi, Zhang Qiang
Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P.R. China.
College of Chemistry and Chemical Engineering, Taishan University, Shandong, 271021, P.R. China.
Angew Chem Int Ed Engl. 2022 Feb 7;61(7):e202114671. doi: 10.1002/anie.202114671. Epub 2021 Dec 21.
Lithium-sulfur (Li-S) batteries are deemed as future energy storage devices due to ultrahigh theoretical energy density. Cathodic polysulfide electrocatalysts have been widely investigated to promote sluggish sulfur redox kinetics. Probing the surface structure of electrocatalysts is vital to understanding the mechanism of polysulfide electrocatalysis. In this work, we for the first time identify surface gelation on disulfide electrocatalysts. Concretely, the Lewis acid sites on disulfides trigger the ring-opening polymerization of the dioxolane solvent to generate a surface gel layer, covering disulfides and reducing the electrocatalytic activity. Accordingly, a Lewis base triethylamine (TEA) is introduced as a competitive inhibitor. Consequently, Li-S batteries with disulfide electrocatalysts and TEA afford high specific capacity and improved rate responses. This work affords new insights on the actual surface structure of electrocatalysts in Li-S batteries.
锂硫(Li-S)电池因其超高的理论能量密度而被视为未来的储能装置。阴极多硫化物电催化剂已被广泛研究,以促进缓慢的硫氧化还原动力学。探究电催化剂的表面结构对于理解多硫化物电催化机理至关重要。在这项工作中,我们首次在二硫化物电催化剂上发现了表面凝胶化现象。具体而言,二硫化物上的路易斯酸位点引发二氧戊环溶剂的开环聚合,生成表面凝胶层,覆盖二硫化物并降低电催化活性。因此,引入路易斯碱三乙胺(TEA)作为竞争性抑制剂。结果,具有二硫化物电催化剂和TEA的锂硫电池具有高比容量和改善的倍率响应。这项工作为锂硫电池中电催化剂的实际表面结构提供了新的见解。