Suppr超能文献

基于流网络模型的电网生命周期碳排放动态跟踪

Dynamic tracking of life cycle carbon emissions in power grids based on a flow network model.

作者信息

Wang Chengwei, Li Pei, Yang Zhiyuan, Wang Haijin

机构信息

Energy Development Research Institute, CSG, Guangzhou, 510530, China.

出版信息

Sci Rep. 2025 Jul 24;15(1):26990. doi: 10.1038/s41598-025-08053-8.

Abstract

This study introduces a flow network model to dynamically track carbon emissions in power grids, addressing limitations of traditional methods by transforming grids into directed graphs with virtual sink nodes for transmission losses. Using Markov chain-based probabilistic flow analysis, the model allocates emissions from generators to loads and power lines, incorporating life cycle emissions and eliminating matrix inversion. Validated via a 24-hour simulation on the IEEE 30-bus system, results demonstrate significant fluctuations in emission factors driven by renewable generation variability. Loads near renewables achieve near-zero emission factors during peak green generation, while loads remote from renewable sources exhibit weaker responses. The grid-level emission factor, inversely correlates with renewable output, reaching minimum during the highest renewable penetration. Furthermore, the model reveals that transmission losses contribute marginally to total emissions compared to loads, emphasizing the need for demand-side optimisation. This framework enables dynamic carbon-aware grid operations, such as aligning consumption with renewable availability and prioritizing low-loss pathways. By incorporating life cycle emissions, the model provides critical insights for sustainable grid planning, highlighting trade-offs between renewable deployment, storage integration, and emission reduction costs. The methodology's scalability and compatibility with both transmission and distribution networks position it as a robust tool for advancing analysis of low-carbon power systems.

摘要

本研究引入了一种流网络模型,用于动态跟踪电网中的碳排放,通过将电网转换为具有虚拟汇节点以处理输电损耗的有向图,解决了传统方法的局限性。该模型使用基于马尔可夫链的概率流分析,将发电机的排放分配到负荷和输电线路,纳入生命周期排放并消除矩阵求逆。通过在IEEE 30节点系统上进行24小时仿真验证,结果表明可再生能源发电的波动性导致排放因子出现显著波动。在绿色发电高峰期,靠近可再生能源的负荷实现了接近零的排放因子,而远离可再生能源的负荷响应较弱。电网层面的排放因子与可再生能源输出呈负相关,在可再生能源渗透率最高时达到最低。此外,该模型表明,与负荷相比,输电损耗对总排放的贡献微乎其微,强调了需求侧优化的必要性。该框架实现了动态的碳感知电网运行,例如使消费与可再生能源可用性相匹配,并优先选择低损耗路径。通过纳入生命周期排放,该模型为可持续电网规划提供了关键见解,突出了可再生能源部署、储能整合和减排成本之间的权衡。该方法的可扩展性以及与输电和配电网络的兼容性,使其成为推进低碳电力系统分析的强大工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a198/12290027/a083f05cd05d/41598_2025_8053_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验