Suppr超能文献

用于炎症性肠病分层医学的可解释深度学习

Explainable deep learning for stratified medicine in inflammatory bowel disease.

作者信息

Verplaetse Nora, Fariselli Piero, Moreau Yves, Raimondi Daniele

机构信息

ESAT-STADIUS, KU Leuven, Leuven, 3001, Belgium.

Department of Medical Sciences, University of Torino, Torino, 10123, Italy.

出版信息

Genome Biol. 2025 Jul 24;26(1):223. doi: 10.1186/s13059-025-03692-6.

Abstract

Moving from a one-size-fits-all to an individual approach in precision medicine requires a deeper understanding of disease molecular mechanisms. Especially in heterogeneous complex diseases such as inflammatory bowel disease (IBD), better molecular stratification will help select the correct therapy. For this, we build end-to-end biologically sparsified neural network architectures for IBD subtyping based on whole exome sequence representations with gene-level and variant-level resolution. By moving beyond univariate methods, we capitalize on the model's ability to extract complex molecular patterns to improve prediction. Model interpretation identifies the most predictive pathways, genes, and variants, uncovering important intestinal barrier, immunological, and microbiome factors.

摘要

在精准医学中,从一刀切的方法转向个体化方法需要对疾病分子机制有更深入的理解。特别是在炎症性肠病(IBD)等异质性复杂疾病中,更好的分子分层将有助于选择正确的治疗方法。为此,我们基于具有基因水平和变异水平分辨率的全外显子序列表示,构建了用于IBD亚型分类的端到端生物稀疏神经网络架构。通过超越单变量方法,我们利用模型提取复杂分子模式的能力来改善预测。模型解释确定了最具预测性的途径、基因和变异,揭示了重要的肠道屏障、免疫和微生物组因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验