Hozé Nathanaël, Pons-Salort Margarita, Metcalf C Jessica E, White Michael, Salje Henrik, Cauchemez Simon
Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, U1332 INSERM, UMR2000 CNRS, Paris, France.
Université Paris Cité, INSERM, IAME, F-75018, Paris, France.
PLoS Comput Biol. 2025 Feb 3;21(2):e1012777. doi: 10.1371/journal.pcbi.1012777. eCollection 2025 Feb.
Population-based serological surveys are a key tool in epidemiology to characterize the level of population immunity and reconstruct the past circulation of pathogens. A variety of serocatalytic models have been developed to estimate the force of infection (FOI) (i.e., the rate at which susceptible individuals become infected) from age-stratified seroprevalence data. However, few tool currently exists to easily implement, combine, and compare these models. Here, we introduce an R package, Rsero, that implements a series of serocatalytic models and estimates the FOI from age-stratified seroprevalence data using Bayesian methods. The package also contains a series of features to perform model comparison and visualise model fit. We introduce new serocatalytic models of successive outbreaks and extend existing models of seroreversion to any transmission model. The different features of the package are illustrated with simulated and real-life data. We show we can identify the correct epidemiological scenario and recover model parameters in different epidemiological settings. We also show how the package can support serosurvey study design in a variety of epidemic situations. This package provides a standard framework to epidemiologists and modellers to study the dynamics of past pathogen circulation from cross-sectional serological survey data.
基于人群的血清学调查是流行病学中的一项关键工具,用于描述人群免疫水平并重建病原体过去的传播情况。已经开发了多种血清催化模型,用于根据年龄分层的血清流行率数据估计感染力(即易感个体被感染的速率)。然而,目前几乎没有工具能够轻松实现、组合和比较这些模型。在此,我们介绍一个R包Rsero,它实现了一系列血清催化模型,并使用贝叶斯方法根据年龄分层的血清流行率数据估计感染力。该包还包含一系列用于进行模型比较和可视化模型拟合的功能。我们引入了连续爆发的新血清催化模型,并将现有的血清逆转模型扩展到任何传播模型。通过模拟数据和实际数据说明了该包的不同功能。我们表明,我们能够识别正确的流行病学情景,并在不同的流行病学环境中恢复模型参数。我们还展示了该包如何在各种疫情情况下支持血清学调查研究设计。这个包为流行病学家和建模人员提供了一个标准框架,用于从横断面血清学调查数据研究过去病原体传播的动态情况。