Zhang Haiting, Wang Kunkun, Xiao Lei, Xue Peng
Beijing Computational Science Research Center, Beijing, 100193, China.
School of Physics and Optoelectronic Engineering, Anhui University, Hefei, 230601, China.
Light Sci Appl. 2025 Jul 26;14(1):253. doi: 10.1038/s41377-025-01919-6.
Dynamical quantum phase transitions (DQPTs), characterized by non-analytic behavior in rate function and abrupt changes in dynamic topological order parameters (DTOPs) over time, have garnered enormous attention in recent decades. However, in non-Hermitian systems, the special biorthogonality of the bases makes the definition of DQPTs complex. In this work, we delve into the comprehensive investigation of self-normal DQPTs (originally used in Hermitian systems) to compare them with their biorthogonal counterpart, within the context of non-Hermitian quantum walks (QWs). We present a detailed analysis of the behaviors of Loschmidt rate functions and DTOPs under these two distinct theoretical approaches. While both self-normal and biorthogonal methods can be used to detect DQPTs in quench dynamics between different topological phases, we theoretically present their differences in the definition of critical momenta and critical times by analyzing the Fisher zeros and fixed points. Finally, we present an experiment that observes both types of DQPTs using one-dimensional discrete-time QWs with single photons.
动力学量子相变(DQPTs),其特征在于速率函数的非解析行为以及动态拓扑序参量(DTOPs)随时间的突然变化,在最近几十年中受到了极大关注。然而,在非厄米系统中,基的特殊双正交性使得DQPTs的定义变得复杂。在这项工作中,我们深入全面地研究了自归一化DQPTs(最初用于厄米系统),以便在非厄米量子行走(QWs)的背景下将它们与其双正交对应物进行比较。我们对这两种不同理论方法下的洛施密特速率函数和DTOPs的行为进行了详细分析。虽然自归一化方法和双正交方法都可用于检测不同拓扑相之间猝灭动力学中的DQPTs,但我们通过分析费舍尔零点和不动点,从理论上阐述了它们在临界动量和临界时间定义上的差异。最后,我们展示了一个实验,该实验使用单光子的一维离散时间QWs观测到了这两种类型的DQPTs。