Mahmoud Eman, Alkhalaf Salem, Senjyu Tomonobu, Furukakoi Masahiro, Hemeida Ashraf, Abozaid Ghada
Faculty of Science, Aswan University, Aswân, 81528, Egypt.
Department of Computer Engineering, College of Computer, Qassim University, Buraydah, Saudi Arabia.
Sci Rep. 2025 Jul 26;15(1):27232. doi: 10.1038/s41598-025-12142-z.
Image segmentation is a critical task in image processing with applications in various domains, including industry and medicine. However, multilevel thresholding, a widely used segmentation technique, suffers from high computational complexity due to the exhaustive search for optimal thresholds. This paper addresses this challenge by proposing a hybrid Genetic Algorithm-Archimedes Optimization Algorithm (GAAOA), further enhanced with a Lévy flight function (GAAOA-Lévy), to improve efficiency and accuracy in multilevel thresholding. The integration of GA's crossover mechanism strengthens local search capabilities, leading to optimal segmentation with fewer iterations. The proposed algorithm is evaluated using standard benchmark images and compared against well-known optimization techniques. Experimental results demonstrate that GAAOA-Lévy outperforms existing methods in terms of Peak Signal-to-Noise Ratio (PSNR), computational efficiency, and convergence speed, particularly excelling in three-level thresholding while reducing computational costs for higher thresholds.
图像分割是图像处理中的一项关键任务,在包括工业和医学在内的各个领域都有应用。然而,多级阈值处理作为一种广泛使用的分割技术,由于要进行穷举搜索以寻找最优阈值,存在计算复杂度高的问题。本文通过提出一种混合遗传算法 - 阿基米德优化算法(GAAOA)来应对这一挑战,该算法进一步通过 Lévy 飞行函数进行增强(GAAOA - Lévy),以提高多级阈值处理的效率和准确性。遗传算法的交叉机制的整合增强了局部搜索能力,从而以更少的迭代次数实现最优分割。使用标准基准图像对所提出的算法进行评估,并与知名优化技术进行比较。实验结果表明,GAAOA - Lévy 在峰值信噪比(PSNR)、计算效率和收敛速度方面优于现有方法,在三级阈值处理方面表现尤为出色,同时降低了更高阈值下的计算成本。