Suppr超能文献

基于全局信息人工蜂群算法的彩色图像多级阈值处理

Multilevel thresholding of color images using globally informed artificial bee colony algorithm.

作者信息

Brajević Ivona, Ignjatović Jelena

机构信息

Faculty of Applied Management, Economics and Finance, University Business Academy in Novi Sad, Jevrejska 24, Belgrade, 11000, Serbia.

Faculty of Science and Mathematics, University of Niš, Višegradska 33, Niš, 18000, Serbia.

出版信息

Sci Rep. 2025 Jul 1;15(1):22041. doi: 10.1038/s41598-025-05238-z.

Abstract

Multilevel image thresholding presents a computational challenge as the number of thresholds increases, requiring efficient optimization techniques. The artificial bee colony (ABC) algorithm is a widely used metaheuristic for addressing this problem. Despite the good performance of the ABC algorithm, it struggles with an inadequate balance between discovering new solutions and refining existing ones. This paper presents the globally informed artificial bee colony (giABC), an enhanced ABC variant, proposed for multilevel color image thresholding. To overcome the limitations of the ABC algorithm, giABC introduces two novel mutation operators. In the employed phase, solutions are dynamically guided toward the mean of the current better solutions, ensuring a sustained balance between global exploration and local enhancement. In the onlooker phase, solutions are further refined by combining attraction to the global best solution with adaptation to promising solutions, significantly enhancing both convergence speed and solution quality. The proposed giABC, along with the ABC, its two variants and the chaotically-enhanced Rao algorithm, were tested on twelve color images from the Berkeley dataset using Otsu's objective function. Experimental results show that giABC outperforms the other metaheuristics in accuracy, robustness, peak signal-to-noise ratio and structural similarity index, with Wilcoxon signed-rank tests confirming its statistical significance.

摘要

随着阈值数量的增加,多级图像阈值处理带来了计算挑战,这需要高效的优化技术。人工蜂群(ABC)算法是一种广泛用于解决此问题的元启发式算法。尽管ABC算法性能良好,但它在发现新解决方案和改进现有解决方案之间难以实现充分的平衡。本文提出了全局信息人工蜂群(giABC)算法,这是一种针对多级彩色图像阈值处理提出的增强型ABC变体。为了克服ABC算法的局限性,giABC引入了两种新颖的变异算子。在 employed 阶段,解被动态引导至当前较好解的均值,确保在全局探索和局部增强之间保持持续平衡。在旁观者阶段,通过将对全局最优解的吸引力与对有希望的解的适应性相结合,进一步优化解,显著提高了收敛速度和解的质量。使用大津目标函数,在来自伯克利数据集的十二幅彩色图像上对所提出的giABC以及ABC算法、其两种变体和混沌增强的拉奥算法进行了测试。实验结果表明,giABC在准确性、鲁棒性、峰值信噪比和结构相似性指数方面优于其他元启发式算法,威尔科克森符号秩检验证实了其统计显著性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ca5/12214501/1c5071518b04/41598_2025_5238_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验